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PREFACE

In the present volume, which is intended as a sequel to
the author’s First Course in Algebra, the following features
may be noted :

(a) The first seven chapters furnish a systematic review
of the ordinary first course up to and including the subject
of simultaneous linear equations. In these opening chapters
the aim is to state briefly and concisely those fundamental
principles which are basal in all algebraic work and with
which the pupil already has some acquaintance. The
method of treatment is largely inductive, being based upon
solved problems and other illustrative material rather than
upon any attempt at proofs or formal demonstrations. The
various principles are explicitly stated, however, at all points
in the form of rules, which are clearly set off in italics. Upon
this plan the pupil is rapidly and effectively prepared for un-
dertaking the newer and more advanced topics which follow.

(b) Chapters VIII-IX (Square Root and Radicals) are
essentially a reproduction of the corresponding chapters in
the First Course, but all of the problems are new. This is
true also of the early parts of Chapter X (Quadratic Equa-
tions). These are topics which usually present more than
average difficulty ; hence, even for pupils who have studied
them carefully before, a complete treatment of them is de-
sirable in the second course.

The introduction and use of tables of square and cube
roots at this point (§ 43) is to be especially noted. It seems

v



vi PREFACE

clear that pupils should be made familiar with such tables
at an earlier date than formerly. One strong reason for this
is that a constantly increasing number of students pass
directly from the high schools into technical pursuits whore
facility in the manipulation of tables of all kinds is especially
desirable. )

(c) Part II, comprising Chapters XI-XX, presents the usual
topics of the advanced course. The order of arrangement
follows, so far as possible, that of the difficulty of the various
subjects, and the whole has been prepared with a view of
introducing a relatively large number of simple illustrative
examples drawn from nature and the arts. Throughout
the development, however, due emphasis has been given
to those fundamental disciplinary values which should bc
preserved in any course in mathematics.

Among the unusual features, it may be observed that the
detailed consideration of exponents and radicals has been
delayed until logarithms are about to be taken up. Thesc
topics in their extended sense have, in fact, but little to d-
with algebra until that time.

Again, the chapter on logarithms is unusually full and com-
plete. All the essential features of this relatively difficult
but increasingly important subject are presented in detail.
In the past, much bas ordinarily been left for the teacher to
explain.

(d) Functions, Mathematical Induction (including the
proof of the Binomial Theorem), and Determinants have
been grouped together under the title Supplementary Topics.
In fact, these subjects lie on the border line between the
second course and the college course. Only the elements of
each are taken up, but there is enough to show its im-
portant bearing in algebra and to pave the way for its
further development in the college course. For example,
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the study of functions is so presented that it at once amplifies
material to be found in the earlier chapters of the book and
brings in new material which is connected with the graphical
study of the theory of equations. Thus it serves as an in-
troduction to the latter subject as presented in the usual
college texts.

As in the authors’ other texts, a star (*) has been placed
against certain sections that may be omitted if desired with-
out destroying the continuity of the whole.

WaALTER B. Forp.
CHARLES AMMERMAN.
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LAPLACE
(Pierre Simon Laplace, 1749-1827)

Famous in mathematics for his researches, which were of a most advanced
kind, and especially famous in astronomy for his enunciation of the Nebular
Hypothesis. Interested also in physics and at various times held high polit~
ical offices under Napoleon.



SECOND COURSE IN ALGEBRA
PART I. REVIEW TOPICS }

CHAPTER 1

FUNDAMENTAL NOTIONS

1. Negative Numbers. In the First Course in Algebra
it was shown how negative as well as positive numbers may
be used, the one being quite as common as the other in every-
day life.

Thus +15° (or simply 15°) means 15° above 0°, while —15°
means 15° below 0. Similarly, +$25 (or simply $25) means a gain
or asset of $25, while —$25 means a loss or debt of the same amount.

Negative numbers are compared with each other in much
the same way as positive numbers. Thus, just as in arith-
metic 4 is less than 5, 3 is less than 4, etc., until finally we
say that O is less than 1, so we continue this idea in algebra
by saying that —1 is less than 0, —2 is less than —1, etc.

The whole situation regarding the size of numbers is
vividly brought out to the eye in the figure below :

| O O O I I I

=12-11=10-9~8—7—6—5—4—3—2—1 0
Fia.,

AN EEEEEEN
2 3456 7 8 9101112

r:....._

Here the positive (+) numbers are placed in their order to
-the right of the point marked 0, while the negative (—)
numbers are placed in their order to the left of that same
point. This figure shows all numbers (positive and negative)
arranged in their increasing order from left to right.

t Chapters I-X (pp. 1-94) furnish a review of the First Course.

The remaining chapters deal with more advanced topics.
B 1



2 SECOND COURSE IN ALGEBRA 1, §1

In Fig. 1, only the positive and negative integers and zero
are actually marked. A complete figure would show also
the positions of the fractions. Thus } is located at the point
halfway between the 0 and the 1; 2} is located at the point
one third the way from 2 to 3; —$ is at the point £ the dis-
tance from 0 to —1; —5% is at the point § the distance from
—5to —6; and so on for all fractions.

By the numerical value (or absolute value) of a negative
number is meant its corresponding positive value.

Thus the numerical, or absolute, value of —3 is +3, or simply 3.

Nore. The numerical value of any positive number is the
number itself.

EXERCISES

In each of the following exercises, state which of the two
numbers is the larger. First locate the number at its proper
place on the line shown in § 1.

1. 7, 10. 5 332 9. 34, 1%

2. 7, —10. 6 2 —§ 10. —34, —18.

3. —7,10. 7. —%, % 11. —3§,0.

4. =7, —-10. 8. —3% —1. 12. —.3, —.05

2. Operations with Numbers. The followmg facts will

be recalled from the First Course in Algebra.t

(a) To add two numbers having like signs, add their absolute
values (§ 1) and prefix the common sign.

Thus (-5)+(—6)=~11.

(b) To add two numbers having unlike signs, find the dif-
ference between their absolute values and prefix the sign of the
one whose absolute value s the greater-

Thus (+3)+(~5)=-2.

t References to the authors’ First Course in Algebra are given ir
this book by page number.
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Note. If we have more than two numbers to add together, as
for example (+44)+4+(—7)+(+5)+(—6)+(—1), the customary
way is to add all the positive parts together, then all the negative
parts, and finally to add the two results thus obtained. Thus, in
the example just mentioned, the sum of the positive partsis 445 =9,
while the sum of the negative parts is (—7)+(—6)+4+(—1) = —14.
The final result sought is, therefore, (+9)4+(—14) = —5.

(¢) To subtract one number from another, change the sign
of the subtrahend and add the result to the minuend.

Thus (-7)—(-5)=(=7)+(+5)=-2.

(d) To multiply one number by another, find the product

of their absolute values, and take it positive if the two numbers
have the same sign, but negative if they have unlike signs.

Thus (+3) - (+2)=+6, and (-3) - (=2)=+86; but (-3). (+2)=
—6 and (+3) - (—2)=-—6.

(e) To divide one number by another, find the quotient of
their absolute values, and take it positive if the numbers have
the same sign, but negative if they have unlike signs.

Thus (+8)+(+2)=+4, and (-8)+(—-2)=+4; but (=8)+(+2)=
—4, and (+8)+(-2)=-4.

EXERCISES

Determine the value of each of the following indicated ex-
pressions.

1. (+9)+(+7). 8. (+25)+(—32)+(—5)+(+12).
2. (—4)+(+7). 9. (+7)—(+4).

3. (+49)+(=7). 10. (+7)—(—4).

4. (—4)+(-=7. 11. (=7)—(+4).

5. (+9)4(—27). 12. (=7)—(—4).

6. (—32)+(+16). 13. (434)—(—63).

7. (=3)+(+2)+(-1). 14. (—54)—(—32).
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16. (+6)—(—4)+(-2)—(-5).
[Hint. By (¢) of § 2, this may first be changed into the form
(+6)+(+4) +(—2) +(+5).]
16. (—3)—(+2)—(—3)+(-6).
17. (—23)+(4+32)— (—27)+(+4)—(—14).

18. (+3) - (—4). 22. (+24)+ (—6).
19. (—4) - (+3). 23. (—36) =+ (+6).
20. (+5) - (+4). 24. (—55)+(—11).
21. (=5) - (—4). 26. (2)+(—3).

3. Use of Letters in Algebra. Algebra is distinguished
from arithmetic not only because of its use of negative num-
bers, but also because of its general use of letters to represent
numbers. This is useful in many ways. In particular, it
enables us to solve problems in arithmetic which would other-
wise be very difficult. The following facts and definitions
will be recalled from the First Course in this connection.

The sum of any two numbers, as z and y, is represented by
z+y. :

The difference between any two numbers, as = and y
(meaning the number which added to ygives ), is represented
byz—y.

The product of any two numbers, such as z and y, is written
in the form zy. It has the same meaning as z Xy, or z - ¥.
Either of the numbers thus multiplied together is called a
factor of the product.

The quotient of x divided by y is expressed either by z+y,

or by i, or by z/y.

The product z -  is represented by x2 and is read x square;
similarly, z - x - z is represented by x® and is read x cube.
More generally, z -z -z -+ to n factors is represented by
x* and is read x fo the nth power. The letter n as thus
used in 2" is called the exponent of z.
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The symbol Vx denotes that number which when squared
gives z. It is called the square root of x. Similarly, Vx is
-alled the cube root of x and denotes that number which
when cubed gives z. In general, Vx is called the nth root of
x, and denotes that number which when raised to the nth
power gives z. The letter n as thus used in V7 is called the
index of the root.

‘Whenever one or more letters are combined in such a way
as to require any of the processes just described, the result
is called an expression.

Thus 2z+3y, az—bry, 6 mn—3Vm+2Vn,and 2 z+y?—29+
Zys are expressions.

An expression is read from left to right in the order in
which the indicated processes occur. Indicated multiplica-
tions and divisions are to be carried out, in general, before
the indicated additions and subtractions.

Thus 2 z+y*—a%+zyz is read ‘“Two z plus y square minus z
cube plus zyz.”

EXERCISES

Read each of the following expressions:
1. 222 5. 3Vz+5vy. o 3zt4y,

m-—n
2. o 6. T4Z_T. o e?4bztezdd

- y w2 : md—nd

3. a*—2 ab+b2. T, \/E'_*_—y'. 11, 3/ x4y,

r—y
4. md—nd, 8. Vz+Vy. 12 Va+b.

13. Express each of the following ideas in letters.

(a) The sum of the squares of = and y.

(b) The difference between m cube and n cube.

. (¢) Three times the product of mn diminished by twice
the quotient of z divided by the square root of y.
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14. The fact that the area of any rectangle is equal to the
product of its two dimensions (length and breadth) is ex-
pressed by the formula A =ab. Express similarly in words
the meaning of each of the following familiar formulas :

(a) A=} bh. (Formula for the area of a triangle.)

) A=mr2 (Formula for the area of a circle.)

(o) C=2ar. (Formula for the circumference of a
circle.) )

(d) h*=a?+b% (Theorem of Pythagoras concerning any
right triangle.)

(¢) V=4xr*. (Formula for the volume of a sphere.)
() A=4xr®. (Formula for the area of a sphere.)

4. Evaluation of Expressions. Whenever the values of
the letters in an expression are given, the expression itself
takes on a definite value. To obtain this value, we must
work out the values of the separate parts of the expression
and then combine them as indicated.

ExampLE. Find the value of the expression
a?+2 bec—c8
a+b+c
when a=1, b= -2, and ¢=3.
SoruTioN. Giving a, b, and c their assigned values, the expres -
sion becomes

1242. (=2)-3-3_14+(=-12)+(—27) _ — 8=_19. Ans.
1+(-2)+3 +2 +2

In evaluating expressions, it is useful to remember tl.
following general facts, which result from (d) of § 2:

(a) The sign of the product of an even number of negati-
factors is positive.
Ex. (=2):(=3)- (-1)- (-4 =+24.



I, §4] FUNDAMENTAL NOTIONS 7

(b) The sign of the product of an odd number of negative
factors is negative. _

Ex. (-2):(-3):-(—1)=-6.

(¢) A negative number raised to an even power gives a
positive result, but if raised to an odd power gives a negative
result.

Ex. (—2)¢=+16, but (—2)*=—8.

(d) An odd oot of a negative number is negative.

Ex. V—27T=-3; V=32=-2; V-3=-}

EXERCISES

Evaluate each of the following expressions for the indi-
cated values of the letters.

1. a®+2 ab+?b? when a=1, b=—1.
2. 4 z?y+4 zy*+zyz, when z=—1, y=2, 2=—3
3 mn?-4-nd
" 2m—n
4. 2V2z-3V9y, when z=18, y=—3.
z Y = =
5. ——— when z=9, y=16.
2Vy 3Vz
-+ 6. V6zy+a*+82% whenz=—1, y=—38, and 2=1.

3
7. ‘fmz'i'"z, when m=2, n=—2, z=5, y=6.
T—y :

8. By means of the formulas in Ex. 14, p. 6, find

(a) The area of the circle whose radius is 3 feet.
[Hint. Take r=3%.]

(b) The circumference of the circle whose radius is 1} feet. .
(¢) The volume of the sphere whose radius is 5 inches.
(d) The area of the sphere whose diameter is 1 yard.

, when m=2, n=6.

D1

v
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6. Definitions. A monomial (or term) is an expression
not separated into parts by the signs + or —, as 5 2%.

A binomial is an expression having two terms, as 3 22—4 yz.

A trinomial is an expression having three terms, as
3 22—4 zy+2.

Any expression containing only powers of one or more
letters is called a polynomial. _

A polynomial is said to be arranged in descending powers
of one of its letters if the term containing the highest power
of that letter is placed first, the term containing the next
lower power is placed second, and so on.

Thus, if we arrange § 2*+1 z8—1+4z —3 z* in descending powers
of z, it becomes } 26 —3 z*+3 z* +z—1.

Similarly, a polynomial is said to be arranged in ascending
powers of one of its letters if the term containing the lowest
power of that letter is placed first, the term containing the
next higher power is placed second, and so on.

Thus, if we arrange 4 #* 4+ z® —1+z —3 24 in ascending powers of
x, it becomes —1+z+3 22 —3 24 +1 z°.

Whenever a term is broken up into two factors, either
factor is known as the coefficient of the other one. Usually
the word is used to designate the factor written first.

Thus, in 4 zy, 4 is the coefficient of zy; in az, a is the coefficient
of z, ete.

' A common factor of two or more terms is a factor that oc-
curs in each of them.

Thus 5 z, az, z?, and 23 have the common factor z.

Whenever two or more terms have a common literal factor,
they are said to be like terms with respect to that factor.

Thus 5z, azr, z, and —2 z are like terms with respect to z;
and 2 a(z—y) and 3 b(z—y) are like terms with respect to z—y.
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6. Addition and Subtraction of Expressions. The follow-
ing rules will be recalled from the First Course, pp. 49-57.

(@) To add like terms, add the coefficients for a new coeffi-
cient and multiply the result by the common factor.

Thus3z+5z—42=3+5—-4)x=4=z.

Similarly, m(x—y) +n(x—y) = (m+n)(x —y).

(I;) To add polynomials, write like terms in the same column,
find the sum of the terms in each column, and connect the results
with the proper signs.

Thus, in adding 3a+4b+2¢, 5a+3b—2¢,and 7a—-9b—-5¢,
the work appears as follows:

3a+4b+2c¢

5a+3b—-2¢

7a-9b-5¢
15a—-2b—5¢c. Ans.

(¢c) To subtract a term from another like term, change the
sign of the subtrahend and add the result to the minuend.

Thus 8 22y —( —3 2?y) =8 z2y +3 22y =11 z%.

(d) To subtract ome polynomial from another, change all
signs in the sublrahend and add the result to the minuend.

Thus, in subtracting 4 mn—2 nr+3 p from 5 mn—4 nr—4 p,
what we have to do is to add —4 mn+2 nr—3 p to 5 mn —4 nr—4 p.
Adding these (see the preceding rule for addition of polynomials)
gives mn—2 nr—7 p. Ans.

Note. If two or more expressions can be arranged according to
the descending powers of some letter (§ 5), it is usually best to do
so before attempting to add, subtract, or perform other operations
upon them.

7. Parenthesis ( ), Bracket [ ], Brace { {, and Vincu-
lum 7. These are symbols for grouping terms that are to
be taken as one single number or expression.

Thus 4 r —(x+3 y—2) means that x+3 y —z as a whole is to be
subtracted from 4 z.
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The following rules will be recalled :
(a) A parenthesis preceded by the sign + (either expressed
or understood) may always be removed without any other change.
(b) A parenthests preceded by the sign — may be removed
provided the stgn of each term in the parenthesis be first changed.
Thus 2a43b+(x—-3y+2)=2a+3b+z-3 y+z
but 2a4+3b—(x-3y+2)=2a4+3b—z+3y—=z.
EXERCISES

1. State the common factors in each of the following
expressions.
(@) =42z, —5z,6z. (c) a(x+1)% blxz+1), c(z+1)3.
(b) rs, 3rs, —101%. (d) 2mn(a+d), 4 m*n(a—>b), 8 mn2.
2. Add7a+6b—3cand4a—7b+4c.
8. Add2z+3y—22y,Tzy—42—9y,and7x—52y—4y.
4 Add z—8-7a22+152%, 4+41428—11z—2?, and
522—92*+10z—12.
[HinT. See Note, § 6.]
6. Add 4(m+n)—3(¢g—r) and 4(m+n)+6(qg—r).
6. Add 10(a+b)—11(b+¢c), 3(a+b)—5(c+d), and
3(b+c)—4(c+d).
7. Add2mz+3 nx—4 gz, nz+2 gz —ry, and py—qz+3 w.
8. Subtract 3 x—2 y+z from 5 z—y+-2.
9. Subtract 4 z*—8—13 22415z from 6 22+41923—4
+12 z.
[HinT. See Note, § 6.]
10. From 13 a+5 b—4 ¢ subtract 8 a+9 b+10 c.
11. From 2 a+3 c+d subtract a—b+-c.
12. From 3 2247 z+10 subtract —22—x—6.
13. Subtract 1—a-+a2—a® from 1—a3.
14. From the sum of 22—4 zy+y? and 6 22— 2 zy+3 32 sub-
tract 322—5xy+7y% Do it all in one operation if you can.
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16. From the sum of 2 s+8t—4 w and 3 s—6 {+2 w take
the sum of 8 s+9¢t+6 wand 4s—71—4 w.

Remove the parentheses and combine terms in each of the
following expressions.

16. a—(2 a+4)— (5 a+10).

17. 62+ (B z—§2z+14).

[HinT. Remove the innermost group sign first.]

18. z—f{z—(x—3 z)}.

19. 202—[(2 247 w)— (3 z+5 w)].

Find the values of the following when a=4, =3, ¢=—2,
and d=—1.

20. 10 — (3 a+b+d).

[HinT. Simplify the expression as far as possible before giving
to a, b, c, and d their special values.]

21. 3d—f{a—(c—Db)}.
22. a+{c—(3d—b){+3{(a—c)—7(b+d)}.
03, 2¢—(a’+bh)
2d—(a*+¢)
24. V4{4a?-2(0*++d)}.

8. Multiplication The following formulas and rules
will be recalled from the First Course,

Formula 1. xmxn=xmtn,

Thus 20 20=25; 2. g =g8; (2a) - (2a)t=(24a)7;
(a+b)®- (a+b)®=(a+b)?; ete.

Formula I leads to the following rule.

(@) To multiply one monomial by another, multiply the
coeffictents for the new coefficient and multiply the letters to-
gether, observing Formula I.

Thus, in multiplying —4 m?n® by 2 m?n? the new coefficient is
(—4) X2, or —8, and the product of the letters is m?n3m2n?, or

m?*m2n3n?, which reduces by Formula I to m*ns. The answer, there-
fore, is —8 m*nS.
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Formula II. (xy)™=xmym™,

Thus (2-3)2=22.3%;, (zy)*=2%"; (@Bu)=3:y=27y%
2mn)2=2m-n)2=(2m)?- n2=22. m?. n2=4 mn?; etc.

Formula III a(b+c) =ab+ac.

Thus 2(3+4)=2-3+2.-4=6+4+8=14; T(Y?+2%) =ry? +x23;
me(mn? —mn) =m3n? —min; ete.

Formula III leads to the following rules.

®) To multiply a polynomial by a monomial multiply each
term of the polynomial separately and combine the results.
Thus the process of multiplying the polynomial m —n+mn by
the monomial mn is as follows :
m—n+mn
mn
min —mn4mn?.  Ans.

(¢) To multiply one polynomial by another, multiply the mul-
tiplicand by each term of the multiplier and combine results.

Thus the process of multiplying z—y+3z by 2z2+3y-2z is as
follows :
r—y+3z

2z4+3y—2
Multiplying by 2z, 222—2zy+6zz
Multiplying by 3 y, 3y -3+ 9y=
Multiplying by —2z, — zz + yz—32
Combining results, 21*+ zy+52z2—3y*+10yz—-322. Ans.

EXERCISES
Find the product in each of the following indicated multi-
plications.
1. 10 a® X6 a% 4. 3 a%% X —2 a®bct.
2. —2abXx3abd. 6. 4y X —8 2%y
3. —4 m2n® X2 m2n. 8. (—4 a*c®) X(2 ab) X(—3 ac).

[Hint To Ex. 6. Multiply the first two expressions together,
then multiply this produet by the last expression.]
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Simplify each of the following expressions.

7. Bx)% 8. (3 ab)2

[Hint To Ex. 8. See fourth illustration under Formula II.}
9. (2 mm)d 10. (8 abc)?. .

[HintT To Ex. 10. 8 abc may be written 8 a - be.]

11, (—2 mn)* 12. (—2 z%y?)s.

13. Show that if the side of one square is twice that of
another, its area is four times as great.

[HixT. Let a =a side of the small square. Then, a side of the
large square =2 a, and the area =(2 a)?.. Now apply Formula II.]

14. Show that if the edge of one cube is twice that of an-
other, the volume is eight times as great.

16. Compare the areas of two circles, one of which has a
radius three times as great as the other. (See Ex. 14 (b),p. 6.)

16. Compare the volumes of two spheres, one of which has
a radius twice as great as the other. (See Ex. 14 (¢), p. 6.)

Find the product in each of the following multiplications.

17. (10 a®b+7 ab*) X —2 a?.

18. 222—3z2y+5y») X —2 xy.

19. (a?—10 ab+15 b?) X4 a?b2.
20, (a*—2 ab+b?) X(a—b).

21. (2z4+7) X3 z+5).

22. (4a2—10b+1) X(2 a2—b+2).

23. Simplify the expression (2 z+y)2

SoLuTioN. (2z+¥):=@2z+y) - (2z+y). Multiplying gives
4 +4zy+1p.  Ans.

24. If the side of a square is represented by 3 x—2, what
represents its area ?

[Hint. Simplify your answer as in Ex. 23.]

26. If the dimensions of a rectangle are represented by
* 242 and z—1, what represents its area?
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26. What represents the area of the triangle whose base
is 2 z+3 and whose altitude is z—5?

) 27. What represents the vol-
/

Z/;/ ; ume of the sphere whose radius

/,: ///4g is2z—17?
4 /// . 28. Explain how the figure to
"1 the left illustrates the geometric
meaning of Formula III.

N
H

Q. <.

9. Division. The following formula and rules will be
recalled from the First Course.

Formula IV. §l=x"““’.

Thus §=2H=2,; ’;—:=z4; g—z-g=(2a)‘=2‘a‘=16a‘;
(a+b)s _ .
(at+b) (a+Db)?; ete.

Formula IV leads to the following rules.

(@) To divide one monomial by another, divide the coeffi-
cients for the new coefficient, observing the law of signs for
division (§ 2 (e)), and divide the literal factors, observing
Formula IV.

Thus, in dividing 28 a®h? by —4 ab the process is carried out as

follows : —4 ab|_28 a3b?
-7 a*. Ans.

Here the division of 28 by —4 gives the new coefiicient, —7,
then the division of a® by a gives a? (by Formula IV), and finally the
division of b2 by b gives b.

() To divide a polynomial by a monomial, divide each
term of the polynomial separately, and combine results.

Thus the division of 8 22y —4 23y2+2 zy by 2 zry is carried out
© a8 below : 2zy |82y —4 2y +2 2y
4 —22% +1. Ans.
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(¢) To divide one polynomial by another :

1. Arrange the dividend and divisor in the descending (or
ascending) powers of some common letter.

2. Divide the first term of the dividend by the first term of the
diwisor, and write the result as the first term of the quotient.

3. Multiply the whole divisor by the first term of the quo-
tient; write the product under the dividend and subtract it from
the dividend.

4. Consider the remainder as a new dividend, and repeat
steps 1, 2, and 3, continuing in the same manner thereafter.

Thus the division of 17 z+4+20+3 22 by 44z is carried out as

follows :
322+172z+20 |__z+4
322 +122 3z+5 Quotient. Ans.
52420
5x420
0

In this example, a new dividend is finally obtained which is equal
t0o 0. Whenever this happens, the division is said to be ezxact. In
cases whore the division does not come out in this way, there is a
remainder, as illustrated by the following example :

3224+172+20| z+43
33+ 9z 3z+8 Quotient. Ans.
8z+420 -
8z+24
— 4 Remasinder.

EXERCISES

1. How do you test (or check) to see whether an answer
in division is correct? Is the same method used for this in
both arithmetic and algebra? Check the correctness of the
results obtained for the last two examples in § 9.

Perform the following divisions, and check your answer.



16

Neow

11.

SECOND COURSE IN ALGEBRA I, §9

ab-+al. 3. 3g9)0=@3g)x 4. (3 ab)8+(3 ab)4

& p*9)"+ (3 P’9)*. 8. fm*+2mr.
—16 z%322 <4 xy%2. 9. 3 ab(a+b)?+[—2(a+b)].
4 a'b?c*+ 20 a?’c. 10. (9 m*np+18 mn®p) <3 mn.

(6 z%yz+12 xy?z—24 ay2?) + (—3 xy2).

In each of the following divisions, find the quotient, also
the remainder if there is one. Check your answer for each.

12.
14.

Bat—2z—1)=(x—1). 13. 1522+x—-2)+- B z—1).
@y+2y—1D+2y-1).

[HinT. Write the dividend in the form 4 y*+2 y»*+0 y—1.]

16.
16.
17.
18.
19.
20.

1.

622—7224+1)+-22z—1).
@P+r2—2+2)+ (x2—z+1).

2 22+3z+1)+ (z+2).

(xt—3 B+x2+2zx—1)+ (22—2x—2).
(a*—2 a?b+2 ab*—b®) + (a—b).
(z*—yH + (x+y).

MISCELLANEOUS EXERCISES
Add 423 -222—-7 241, 234+322+52—6, 4 12—8 13 4+2—6 =z,

23—-2224+8zx+4,and —2x+1+42 233 22,

Add 3(a+b)+6(b+c), 5(a+b)—10(b+c), 2(a+b)+ (b+c),

3(b+c) —(a+Db), 2(b+c) —10(a+b), and 3(a+b) —3(b+c).

4.

From the sum of 14z and 1—2? subtract 1 —.r+x2—23.
Simplify the expression
ab—{5+z—(b+c—ab+x)}+[e—(b—c—7)].
When z =3, m =6, n=2 find the value of the expression
(m4+n+z)r—(m+n—2)"—(m—n+x)*"(—m+n+x)"
Simplify the expression
P =22 —zy(x—y) —*]+2(x —y) (@ +xy + ).

Find the remainder in the following divisions

(a) (at+1)+(a—1).

(b) [,;an—a +y8n+a] -+ [xn°l +yn+l]_



CHAPTER 1II

SPECIAL PRODUCTS AND FACTORING

10. Special Products. Certain products occur so fre-
quently in algebra that it is desirable to study them with
especial care and to remember their forms. In this connec-
tion, the following formulas will be recalled.

Formula V. (x=y)(x+y) =x2—y

Thus (z —8)(x+8) =22 —82=22—64;
Qz-3y)9z+3y)=9z)>—(3y)?=81z2—-9 3

Formula VI. (x+y)=x2+2 xy+yt.

Thus (r4+6)*=r242(r- 6)+62=124+12r+436;
2a+3b)2=(2a)24+2(2a)(3b)+(3b)2=4a2+12ab+9 b2

Formula VII. (x—y)?=x>—2 xy+y°.

Thus (r—6)=r2—2(r- 6)+62=r2—12r436,;
Bz—-2y)2=(32)—-232)(2y) +(2y)*=92* — 122y +4"

Formula VIII. (x+m)(x+n)=x%+ (m+n)x+mn,
m and n being any (positive or negative) numbers.
Thus (z+4)(x+3) =22+ 4+3)z+4 - 3=224+7 r+12;

(ab—6)(ab+2) = (ab)2+(—6+2)ab+(—6) - 2 = a2 —4 ab—12,
c 17
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ORAL EXERCISES
State under which formula each of the following products
comes, and read off the answer by inspection.
1. (z—3)(x+3). 8. (6+a)(6—a). 5. bz—2)(52+2).
2. (r—5)(r+5). 4. (z—4)(z+4). 6. (1-32°)(1+4+3z?).

a,b\fa b
7. (xy—12)(@y+12). 8. <§+§X§—§).
9. (z+8)% 14, (4zy—1)2 19. (z+3)(x—4).
10. (z—8)% 16. (2ab—3 cd)®. 20. (a+6)(a—S8).
11, (2z+1)2 16. (z+3)% 21. (z—12)(z—2).
12. (3 x—4)2 17. Bz—2)2 22. (ab+2)(ab+6).
13. (a+20)2 18. 2m+3in)®.  23. (a®+4)(a2—6).

24. (4z+3)(4z—2). 26. {(a+b)+5}{(a+b)—5}.

26. Ba—5y)Ba+T7y). 27 {(m+n)—2p}{(m+n)+2pi.
28. {8—(r+s)}{8+(r+s)}.
29. {(a+b)—(c+d)}{(a+b)+(c+d)}.
30. {(m+n)—4}{(m+n)—>5{.

WRITTEN EXERCISES

1. Show how Formulas VI and VII can be obtained as
special cases of Formula VIII.

2. Show how the following three figures illustrate re-
spectively the geometric meanings of FormulasV, VI, and VII.

Fia. 3.
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By use of Formulas V, VI, and VII write down (without
multiplying out) the simplest forms for the following prod-
ucts.

3. (a®+a—1)(a*—a+1).

[Hint. Write first as {a*+(a —1)Ka?—(a —1)}, then apply For-
mula V, afterwards simplifying your answer by Formula VII. The
final result is at—a2+42 a—1.]

4. (a*+ab+b?)(a?—ab+0b?). 7. {(x+y)—4i
6. (x2+x—2)(xt—zx—2). 8. [T+ (m—n)l2
6. (a—b+m+n)(a—b—m—n). 9. [(z+y)—(m+n)]2.

10. (a+b+0)2

[HinT. Write as [(a +b) 4c]? and apply Formula VI twice.]

11. The rule for finding the square of any polynomial is
as follows. The square of any polynomial is equal to the sum
of the squares of its terms plus twice the product of each term by
each term that follows it. For example,

(a+b+c+d)*=
a?4+-b*+-c2+d?+2 ab+-2 ac+2 ad+2 bc+2 bd+2 cd.

Show that Formulas VI and VII conform to this general

rule; also that your answer for Ex. 10 does so.

By means of the general rule in Ex. 11, write out the values
of each of the following expressions.

12. (a+b—c) 14. 2z4+y—2)2

13. (a—b—c)2 16. (2z+2y—z+3 w)2

11. Type Forms of Factoring. Factoring is the reverse
of multiplication in the sense that in multiplication certain
factors are given and we are asked to find their product,
while in factoring a certain product is given and we are
asked to find its factors, that is, to find expressions which
multiplied together produce it. The following four types
of expressions are to be especially noted, as they can always
be readily factored. '
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(a) Expressions whose terms each contains a common factor.
Thus mz+my+mz=m(zx+y+z); (Formula III, p. 12.)
a*’z+ar*+a*r? =az(a+z+az);
ar—ay+br—by=a(z—y)+b(zx—y)=(x—y)(a+bd);
2z—y+422-2zy=Qz—y)+2x2z—-y)=QRz—y)(1 +2zx).

Note that in all these examples the given expression has
finally been exhibited as a product. This is essential to every
example in factoring.

(b) Ezxpressions which can be regarded as the difference of
two squares.

Thus 25x22—y2=0bBzxz—y)(5x+y); (Formula V, p. 17.)

a?h? —c2d? = (ab —cd)(ab +cd) ;
12— Sy =Gz-Gz+in);
(a+b)2—c2=[(a+b) —c][(a+b) +c]=(a+b—c)(a+b+c).

(¢) Trinomials of the form x*+px-+q, where p and q have
such values that we can readily find two numbers whose sum is
b and whose product 1s q.

Thus, in factoring x2+7 z +12, we need only inquire whether we
can find two numbers whose sum is 7 and whose product is 12.
The numbers 3 and 4 are seen (by inspection) to do this. Hence we
know by Formula VIII that we may write

22472412 =(x+3)(x+4). Ans.

Similarly, 22—r—12=(x—4)(z+3); Why?

22—52zy—36 42 =(z—9y)(x+4y);
a2b? —21 ab —72 = (ab —24) (ab +3).

(d) Trinomials of the form ax*+bx-+c which are perfect
squares, that is such that the coefficients a-and ¢ are perfect
squares while the other coefficient, namely b, is equal in ah-
solute value (§ 1) to twice the product of the square roots of
a and c.

Thus 9 22+12 z+4 is a perfect square because 12=2. V9. V4.
Hence, by Formula VI, we have )

9224+122+4=3Bz+2)2=32+2)3 x+2). -Ans.

Similarly, z? —14 z +49 is a perfect square, because

14=2. V1. V49,
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Thus we have, using Formula VII,
22—1424+49=(x -T2 =(z-7)(z-=T7).
For a like reason, we see that z2+14 2 +49 = (z+7) (x +7).

The following are two other examples that can be brought
under this case.
a?b* —2 ab+4 = (ab —2)? = (ab —2)(ab —2).
4(a+b)+4(a+d) +1=[2(a+b) +12=(2a+2 b+1)(2 a+2 b+1).
‘We could not, however, factor 224+3zx+4ord4a?2—4z—1
by this method. Why ?

EXERCISES
Factor each of the following expressions :
1. (a) 224+2z. (¢c) 8a*+24a.
®) zy+zyr. (d) ab*+-b*—b%.

(e) 25 c*da®+35 drt— 55 cdx®.

@) mBzx—1)—n@Bz—1).

(9) m(a+b—c)+n(a+b—c)—qla+b—c).

(h) pg—px—rg+rz.

) y—4ytzy—4z. (§) 322—152+10y—2 2%y.

2. (a) 81—22. ) 92— (a—2x)2

() az—b%c. (9) 49a2—(5a—4Dd)2.

(¢) 144 22—4. (h) (2x+5)2—(5x—3)2

(d) }x%2—36. (@) (@+2?)2—(2zx+2)2 -

2 x2 y 2 2

@ F— (G) (@+b+er—(a—b—o).
3. (a) z»+6z+8. () x*+xy—>56 32

) 22—6 z+8. (9) 1247 a+a.

(c) v+y—42. (h) y*—3 ny—28 n2.

(d) 22—13 z—48. (7)) ar*+azx—12.

(¢) x*—z—110. () =419 cx?+90 2.
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4. Test each of the following expressions to see whether
it is a trinomial square, and if so, factor it.

(a) z2—8 z+16. () 16 y2—24 y+9.
(b) x2—12 z+36. (g) 4 x%y?—20 xy+25.
(c) 422+6z+1. (h) #*+2z(x—y)+@—y)

(d) 8122418 z+1. (%) 16—24(a—b)+9(a—b)2
(e) 81—-72r+167% @) (@+b)*—2(a+b)(b+c)+ (b+c)z.

6. The figure shows a square of side a within which lies
(in any manner) a smaller square of side b. Prove that the

. area between the two (shaded in the figure)
SO is equal to (a+b)(a—D).
o \ .

\ 6. The result in Ex. 5 furnishes a rule

\\ for determining quickly the area between
\ any two squares when the one lies within

N
M\ the other. State the rule.

a
Fic. 4. 7. By means of Exs. 5 and 6 answer the

following : What is the area of pavement
in the street surrounding a city block one half mile on a
side, the street being 4 rods wide? (1 mile=320 rods.)

8. Show that the area between a circle of radius R
and a smaller circle of radius r lying within it is equal to
#(R+7)(R—r). Does it make any difference where the
smaller circle lies so long as it is within the large one?

.

_

9. Show that if @ and b are the sides of a right triangle
whose hypotenuse is h, we shall have a?=(h+b)(h—b) ; also
b= (h+a)(h—a).

10. Formula V is frequently used to find the square of a
number quickly by mental arithmetic. Suppose, for example,
that we wish to know the value of 162. We first take 6 away
from the number, leaving 10, then we add 6 to it, giving 22.
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We multiply the 10 and the 22 thus obtained (as is easily
done mentally), giving 220. Now all we have to do is to add
62, or 36, to the 220 to obtain the desired value of 162, giving
256 as the answer. The reason for these steps appears below.

(16—6)(16+6)=162—6?, (Formula V.)
whence (16—6)(16+6)+62=162

Find (mentally) in this way the value of each of the fol-
lowing expressions. -

(a) 152 (e) 172 (e) 312
[HinT. Subtract 5 first, then add 5.]
(b) 142 (d) 222 () 45%.

*12. Other Type Forms. Besides the type forms men-
tioned in § 11, the following may be noted :

(e) Trinomials of the form ax*+bx+c which are not per-
fect squares.and hence do not fall under (d) of § 11. There is
no general rule in such cases, though we may frequently
discover by inspection whether a given trinomial of this form
is factorable readily, and if so, obtain its factors. Thisis
best understood from an example.

Exampre. Factor 15 22—7 2—2.

SorLuTioN. For 15 22, try 5 z and 3 z; thus we begin by writing
(G¥ 7 )3z ), where the open spaces are yet to be filled in.
For —2 try 1 and 2 with unlike signs, arranging the signs so that
the sum of the cross products shall give, as desired, the —7 = of the
given expression; thus we now try (5zx+1)(3z—2). Here the
middle term of the product (cross product) is readily found to be
—10z+3 z, or —7 z, as desired. The only other possibility would
be (5 z—1)(3 z+2), but as the cross product term here becomes
10 x —3 z, or +7 z, this form cannot be the one we desire.

We have, therefore, 1522 -7 z—-2=(52+1)(3 2 —2). Ans.
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(f) The sum of two cubes. This form is factorable in ac-
cordance with the following formula.

Formula IX. x'+y'= (x+y)(x2_xy+y2).

Thus 22 4+8 =23 +4+28 = (z +2) (22 —22 +22)
. =(z+4+2)(z*—2x+4). Ans.
Likewise,
m*nt +64 p* = (mn)*+(4 p)* = (mn +4 p)[(mn)? — (mn)(4 p)+(4 p)?]
= (mn-+4 p)(m*n2—4 mnp+16 p?). Ans.

(9) The difference of two cubes. This form is factorable
in accordance with the following formula.

Formula X. x—pf=(x—y)(2*+xy+p?).
Thus 23 -27 =23 -3* = (z —3) (2243 £ +3%)
=(x-3)(x+3 z+9). Ans.
82—-125y'=22)P -G y)=2z-5y)[(22)*+(22)(6 y)+(5 )%
=2z-5y)(42*+102y+25 3?). Ans.

13. Complete Factoring. Each of the exercises on p. 21
" concerns but a single one of the {ype forms mentioned in § 11,
but we often meet with problems in which two or more of the
types are concerned at the same time. Thus, in factoring
a’b—ab?, we first take out the common factor ab. This gives
a’b—ab*=ab(a?—b%). Buta?—b? is itself factorable, coming
under type (b) of § 11. The final answer, therefore, is
ab(a—b)(a+b).

Other illustrations of this idea occur below. Note that the
final answer in every case contains no factors which them-
selves can be still further broken up into other factors.

ExampLE 1. Factor completely z2—y2+z—y.

SoLuTION.
B—ptzr—y=(@=y?) +(z—y) = (z—y)(z+y)+(z—y) (See (b), §11.)
=(z—-y)(z+y+1). Ans.
(See (a) §11.)
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ExamrLE 2. Factor completely a*+3 a?b?—4 bt

SoLuTION.
a*+3 a*b®* —4 b= (a*+4 b?)(a® - b?) (See (c), § 11.)
=(a*+4b*)(a—b)(a+b). (See (b), § 11.)

EXERCISES

Factor completely each of the following expressions. Those
preceded by the * involve the type forms mentioned in § 12.

1. B—x2—z+1. 14, 1—a®»®*— 2%+ 2 abxy.
(HINT. Write in the form. 16. (z®—y?)?—(2?—zy)%
z*(z —1)—(z—1).] *16. *+yt+a2—y2
2. 223—8 2%y+8 xy. O *17, (x+1)3—=zb.
[Hint. Write in the form 18. (1—-2z)*—xt
2z (z? —4 zy+4y?).] *19. 6 2247 x—3.
3. 2?+3az—3a—z. *20. 20 z*—62—2.
4 a*+2a*—4a—8. 21. 8x2—18 zy—5 42
5. z4—13 22+36. 32 #-16.
6. z‘+y‘_2 zgy,. 23. 11 x2+34 I+3.
J— 4
7. B—(2z—1)2 :4. 25:':‘ 325 s:t?+4 ¢ 2
8. 1—a?—b*+2 ab. 5. —30 x%a+ 25 a?.
26. a*+b*+c2—2ab+2ac
[HINT. 1—a*—=0*+42ab=1- —92be
(a—b)2] )
' \ 27. (a—2%)%— (b—y?)2
— 2_
9. m 4mn+4 n 16. *98 x3+y3+z+y.
10. 2zy—2*—y*+1. 29. 22—9y*+z+3y.
11. 1+9¢+6ec. 30. a*—2 a?b+4 ab>—8 b,

12. (#*—1)*4+(2z+3)(x—1)%  31..16 z*—y*—6 2.
13. 32*—32+42t—422 32, r*—47 %2490 yi.



CHAPTER III

HIGHEST COMMON FACTOR AND LOWEST COMMON
MULTIPLE

14. Prime Factor. A number which has no factor except
itself and unity is called in arithmetic a prime, number.
Such a number when used as a factor is called a prime factor.

Thus the prime factors of 15 are 3 and 5.

The word prime factor is similarly used in algebra.

Thus we say that the prime factors of 3 abc are 3, a, b, and c.

The prime factors of 18 z?y are 2, 3, 3, z, z, and y.

The prime factors of a%b(a?—b?) are a, a, b, a—b,and a+b. (See
Formula V.)

16. Finding Common Factors. As soon as we have fac-
tored each of several expressions into its prime factors, we can
readily pick out their common factors (§ 5).

Thus, in finding the common factors of abc, a%h, ab?, and 3 ab, we
write
abc=a-b-c, atb=a-a-b, ab®=a-b-b, 3ab=3-a-b.

The common factors are, therefore, a and b, since these occur in
each expression and they are the only factors thus appearing.

16. Highest Common Factor. The product of all the
common prime factors of two or more expressions is called
their highest common factor. 1t is called the highest be-
cause it contains all the common factors, and the usual ab-
breviation for it is H. C. F.

ExamprE 1. Find the H. C. F. of 102%3, 2zy?, and 18 2%y2.
SorLuTioN. Resolving each into its prime factors,
10x2y8=2. 5.2-x- Y Y-y
2zy=2-z-y- ¥
lsxayz___z. 3:3-z-z-x: Y-y
The factors common to the three expressions are thus seen to be

2,2,9, Y.
The H. C. F. is, therefore, 2- z- y- y, or 2 zy?. Ans.
26
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Exampre 2. TFind the H.C.F. of 3 2?43 z—18,
6 22436 £+ 54, and 9 x2—81.

SoLvuTION.
3224+3x2—18=3(x2+zx—6) =3(x+3)(z—2). (See (¢), §11.)
622436 24+54=6(224+6 r49) =2 3(x+3)(z+3). (See (d), § 11.)
922 —81=9(22-9)=3: 3(z+3)(x—3). (See (b), §11.)

The common factors being 3 and (z+3), the H. C. F.is 3(x +3.) Ans.
In general, to find the H. C. F. of two or more expressions :
1. Find the prime factors of each expression.
2. Pick out the different prime factors and give to each the
lowest exponent to which it occurs in any of the expressions.
3. Form the product of all the factors found in step 2.
NoTe. Since the H. C. F. of several expressions consists only
of factors common to them all, it is always an exact divisor of each

of the expressions. It is therefore called in arithmetic *‘ the great-
est common divisor’’ and is represented by G. C. D.

EXERCISES
Find the H. C. F. of each of the following groups.
1. 12, 18. 7. a*+7 a+12, a2—9.
2. 16, 24, 36. 8. 22—y, (x—y)?, 22— 3xy+212
3. z%, x2. 9. m*+4 m-+4, m*—6 m—16.
4. a%, ab? a?b?. 10. 3 y2—363, y2—7 y—44.
6. 2 x%y, 6 2%y, 14 x¥y224. 11, 2 a*+4 a,4 a®*+12 a®>+8 a.

6. a?—b? a?—2ab+b2. 12, ‘—yf B4ty +xyP+~.
13. 3r549 -3 13, 5 r2%2+15rs*—5 82, 7 ar?+-21 ar—7 a.
*14. a®—b%, a®—b% a—b. *16. 2?41, 2?—z+1.

17. Common Multiple. In arithmetic a number which
is exactly divisible by two or more given numbers is called a
common multiple of them.

The word common multiple is similarly used in algebra.

Thus 4 2?y? is a common multiple of z and y; it is also a common

multiple of 4 and z. Similarly, a? —b? is a common multiple of a —b
and a+b.
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18. Lowest Common Multiple. The lowest common
multiple of two or more numbers or expressions is that
multiple of them which contains the fewest possible prime
factors. Its abbreviationis L. C. M.

The following examples illustrate what the L. C. M. means
and how to obtain it.

ExampLE 1. Find the L.C. M. of 10a%, 16 a2b®, and
20 a’b*.

SoLuTiON. Separate each expression into ite prime factors. Thus
10a?6=2-5-a-a- b,
16a23=2.-2-2-2-a-a-b- y
20 a%*=2-2-5-a-a-a-b- - b.

The LLC.M.i82:-2:-2-2-5-a-a-a-b-b-b-b, or 80 a3,

since this contains all the factors of each of the three expressions,

and at the same time is made up of fewer factors than any other
similar expression that can be found.

ExampLE 2. Find the L.C. M. of z*—1022+49 and
22—4 z+3.

SoLuTION.

24-10 2249 =(22-9) (22 —1) = (¢ -3)(z+3)(z — 1) (z +1),
22—4243=(z-3)(z—1).

Therefore the L. C. M. is (x —3)(z+3)(x —1)(z+1).

In general, to find the L. C. M. of two or more expressions :

1. Find the prime factors of each expression.

2. Pick out the different prime factors, taking each the great-
est number of times it occurs in any one of the expressions.

3. Form the product of all the factors found in step 2.

Note. From the manner in which the L. C. M. is formed, it
‘must be exactly divisible by each of the given numbers, or expressions.

b-b
b-b

EXERCISES

Find the L. C. M. of each of the groups of expressions in
the exercises on p. 27.



CHAPTER 1V
FRACTIONS

19. Definitions. Any expression of the form a, b is called
a fraction. It means the number, or expression, which when
multiplied by b gives a. The part above the line, or a, is
called the numerator, while the part below the line, or b, is
called the denominator. The numerator and denominator
taken together are called the terms of the fraction.

20. Equivalent Fractions. It is often desirable to change
the form of a fraction without changing its value. Such
changes all depend upon the following principle.

The numerator and denominator of a fraction mgy be multi-
plied or divided by the same number, or expression, without
changing the value of the fraction. Thus

4a_sa-a_ia,

5 5.a Sa
atb __ (a+6) _ 1
(a+b)* (a+b)(a+b) a+bd

21. Changes of Signs in Fractions. There are three signs
to be considered in a fraction ; the sign of the numerator, the
sign of the denominator, and the sign of the fraction itself.

Thus in +i§, the three signs in the order just mentioned are
—, +, +, whilein — —5(;1b they are +, —, —.
29




30 SECOND COURSE IN ALGEBRA [Iv, § 21

Since a fraction is merely an indicated division, the law
of signs for division (§ 2 (¢), p. 3) must hold at all times, so
that we arrive at the following rule.

Any two of the three signs of a fraction may be changed with-
out altering the value of the fraction. Thus

433 _4=3__-3__43
+4 -4 +4 -4
Likewise
g_—6__—a__G_
b -b b —-b

Care must be taken, however, in changing the sign of the
numerator or denominator of a fraction when polynomials
are present. For example, if the numerator is a po'ynomial,
we can change the sign of the whole numerator only by chang-
ing the sign of every term in it. A similar statement applies
when the denominator is a polynomial. Thus,

g+2b+c _ _ —a—-2b—c _ a+2b+c

2a—3b—2¢ 2a—-3b—2¢ —2a+3b+2¢

Observe carefully the reason for every change of sign here.

22. Reduction of Fractions to Lowest Terms. A fraction
is reduced to its lowest terms when its numerator and de-
nominator have no common factor except 1.

To reduce a fraction to its lowest terms, factor numerator and
denomainator, then divide each by all their common factors.

25,121,3,3:5.5.,1./.,.);.b.b.¢=5_b_2‘
35ax B-T7-¢-g-a-f-3 To

a2—11a424 _(a—8)(a<3) _a—8
ExAMPLE 2. a6 (a—2)a=5) a2

ExawmpLE 1.
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23. Lowest Common Denominator. The lowest common
denominator of two or more fractions is the lowest common
multiple (§ 18) of their denominators.

To reduce several fractions to their lowest common . denomi-
nator:

1. Findthe L. C. M. of the denominators.

2. For each fraction, divide this L. C. M. by the given de-
nominator, and mulliply both numerator and denominator by the
quotient.

ExampLE. Reduce the following fractions to equivalent
fractions having their lowest common denominator :

z+2 and z+5

-9 2+97+18

SoLuTioN. Factoring the denominators, the fractions may be
written
z+2 and z+5
(z+3)(z—3) (z+3)(z+6)

The.L. C. M. of these denominators is (z+3)(z—3)(z+6). In
order to give the first fraction this L. C. M. as its denominator,
multiply its numerator and denominator by z+6 (this being the
L. C. M. divided by the denominator of the first fraction).

In order to give the second fraction this L. C. M. as its denomina~
tor, multiply its numerator and denominator by z —3 (this being
the L. C. M. divided by the denominator of the second fraction).
The desired forms are, therefore,

(z4+2)(x+6) and (x4+5)(x—3)
(z+3)(z—3)(z+6) (£4+3)(z—3)(z+6)

Observe that these fractions are respectively eqﬁiva.]ent (§20) to
those with which we started, but these have denominators that are
alike, which was not the case with the original forms.
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EXERCISES

Write each of the following fractions in three other ways
without changing the value.

5 6 a—b 3xz—4
1. —- 2. — 3 —: 4 —= — .
—6 11—z c—d 2z—-1)(z+3)
Reduce each of the following expressions to lowest terms.
240 a?b®*+ab
5. —. ) :
320 10- (@)
6. 10zy 11. 42—y
30 x? y—2z
g 36ar 19 £=65+8
T 72 233 © s2—55+6
g —9ab¢c 13, =6 7+5
e " r—6r+5
o _ T  92—499
T a?—2zy+y? T 28ry2—12 2%y

Reduce all of the fractions in each of the following groups
to the lowest common denominator.

3k k
N 19. ,
ol z—5 12—2z2—15
bec
6. 22 ¢ a _=z
18 62 0. e a+b
3 2 x 1
17. S 2 . R
ab n 22—1 z(1—2)
3b 2 a r 1
18. y” y 22. (a+b)” i
23 1 1 .
© 245 b+6" 2(b2+6 b+9)
24, z—2 r—1 z+3

—2z-8 22—3z—10 2—92+20
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24. Addition and Subtraction of Fractions. The follow-
ing rule, which is the same in algebra as in arithmetie, will be
recalled from the First Course, p. 151.

To add, or subtract, fractions :

1. Reduce the fractions tv equivalent fractions having their
lowest common denominator (L. C. D.).

2. Add, or subtract, each numerator according lo the sign
before the fraction and wrile the result over the L. C. D.

3. Reduce the resulting fraction to its lowest terms.
4 _a.—2+ 3a®
a—1 a+1 a*-1
4 a—2_*_3a2 =4a+4_a*—3a+2+3a’
a—1 a+1 a*—1 a*-1 =~ a?-1 at—1
_4a+4—(a*—3a+2)+3a*_2a*+7a+2 Ans
at—1 a?—1 :

ExamprLeE. Simplify

SOLUTION.

EXERCISES

Simplify each of the following expressions.

2a,3a a 2r _3s 3 2,4
,20,3a_a g 2T 98 b =42
1 3+4 2 r y ah? ab+a2

2z, 23 y—4_20-y)  y 11,1
2. 5-l- 6 4. 3 G +8 6. a+b+c

1 1 + | P atb _  a—=b
2z—2 3(z+1) 3z—3 ~ a’+2ab+b a?—2ab+1?
8. L.*__l_ 13. -2 4+ Y 43,

z+y y—=x r—y Yy—<z
9. at+b_a—b. 14 1L 1 n—6
a—b a+bd n+4 1—n n?+3n—4

r+1 r 1 427
), — ——— ———4—— 1. -3+ - —.
10 r2—2r—8 r—4+r+2 ’ +x2+3x+9
1 1 T 1+a2
. - . 16, T — T .
1 2—4x—5 x*—6x+5 z—1 224z+1

D
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26. Multiplication and Division of Fractions. Fractions
are multiplied in algebra as in arithmetic by taking the
product of the numerators for the numerator, and the product
of the denominators for the denominator, canceling wherever
possible.

3 a’bx2 z?y _3 + 2 a’bx?y’
41y 9ab® 4 -9zxylab’

Canceling like factors from numerator and denominator, this
reduces to

ExampLE 1.

azy,
B b Ans.

ExAMPLE 2.
a*4+2a—-8, a*+5a—6_(a+P(e—1), (@¥6)(a—1)
at+6a a*+a—12 a(a-+6) (g+4)(a—3)
=ga—2)ga—1)_ Ans
a(a—3) ’
In algebra we divide one fraction by another as we do in
arithmetic, by inverting the divisor and proceeding as in
multiplication.

EXAMPLE.
a? —b? . a—=b __ a*-b? a+4-ab
at+2 ab+b? a?4ab a®4-2ab+b2" a-—b
= =0 +b)  a@F0) _, g
(a#+t)(a40) g~

EXERCISES

Perform each of the following multiplications.

3 2
1. 2.4, g mn mn TS |
4 5 rs: s mnd
b a—-b 2
2 2.2. 6. 1 —9 . < .
b ¢ a*+-b* a+bd
. 200 42 7. _5a=by  z—y
3zy S5a 222 442y+2y> 5
s (_ 6a )_IOb’. o r+2  s—1 4s5-6
18by/ 8a® 2s-3 2r4+2 r42
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° (j*'—’)( -2)

10 a=b 22—y 4 2
" z—y b—a zty a—b

Perform the following divisions.

4.2 2ab-b, a*—-b%
—+= 14.
11. -9 3 a(a+b) 2a 2a-b
1022, 122 —98, r’4rs—6s
g T 22T
1 11y ¢ 16. —482 P—rs—6 52
13 a+2a_. (a+2)?
" at—-2a (a—2)

Perform the indicated operations and s1mphfy each of the
following expressions.

() ()
z+y z—Yy z+y z—y

G
Y
18 =y 19, (m+2¢ 2 )( m__ 3.
"3_4 m  m—3)\m—2 m+3)
)

3
z
20. (2 z—148 x—11)+(x+3_3 x+17).

1

Cd

17.

-3

z+4 z+4

z—1 _ 2 .

2. (1 x’+6:c+5)(1 2247 x+12>
1 1 1
z+1 z+1  1-—
22. T +—t—
S oz41l 11—z 14z




CHAPTER V
SIMPLE EQUATIONS

26. Preliminary Considerations. - Suppose we wish to
divide 64 into two parts such that if one part be divided by
5 and the other by 7 the sum of the quotients shall be 10.
Such a problem as this can be done only with some difficulty
by arithmetic, but it is a simple task by algebra.

SoLuTioN. Let z represent one part.

Then 64 —z will be the value of the other part.
From the statement of the problem, we are to have
z,64—x
5 +—7- =10.
Let us multiply both sides of this equality by 35 (as we may do
without destroying it), thus clearing it of fractions. This gives
7 r4320—-5 x =350.
Subtracting 320 from both sides of this last equality (as we may
do without destroying it), and replacing 7 z —5 z by its value 2 z,

we obtain ) 2z =30.
Hence (dividing both sides by 2) we have
z=15.
The two parts sought are therefore 15 and 64 —15, or 49. Ans.
CHECK. _ 15449 =34+7=10.

A statement of equality, like any of those above, wherein
a single unknown letter occurs, and occurs to no higher power
than the first, is called a simple equation. It is also known
as a linear equation, or an equation of the first degree.

The process of finding the value of the unknown letter is
called solving the equation.

The value of the unknown letter is called the solution,

or root, of the equation.
36
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27. Principles Useful in the Solving of Equations. In
solving an equation we may at any point in the process add
the same amount to both sides, or subtract the same amount
from both, or we may multiply both by the same amount, or
divide both by the same amount, as was illustrated in § 26.
Derived from these are the following useful principles.

(a) A term may be transposed (carried over) from one side
(or member) of an equation to the other provided its sign is
changed. .

Thus, in the equation 3 z —4 =2 we may transpose the term — 4
to the second member, giving 3z =2+4, or 3z=6. This is equiva-
lent, to adding 4 to both members of the given equation.

The solving of equations is greatly simplified by a free use
of this principle of transposing terms.

Thus, in solving 3 x —4 =212, we may transpose the —4 from
the first member to the second and at the same time transpose the

term z from the second member to the first, giving —z+3 z =244,
or 2z=6. Therefore r=3. Ans.

(b) A term which appears in both members of an equation
may be canceled.

Thus, by canceling the 3 from both members of the equation
2 243 =10+3, we have simply 2 z =10, and hence z =5.

Note that to cancel a term in this way merely amounts to
subtracting it from both members of the given equation.

(¢) The signs of all the terms in an equation may be changed.
Thus —5 243 =z —9 may be written 5 £ —3 = —z +9.

Note that to change all signs in this manner amounts
to multiplying both members of the given equation by —1.

(d) An equation may be cleared of fractions by multiplying
both members by the lowest common denominator of all the
Jractions.
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z—2_2—3_ o _z—1

3 4 2
SoruTioN. The L.C. M. of the denominators is 12.
Multiplying both members by 12,

4(r—2)—-3(z—3)=72—-6(z—1).
Removing parentheses (§ 7),
42r-8-32+9=72-62z+6.

ExaMpPLE. Solve the equation

T ing,
Tansposing 6z4+42—32=72+64+8-9,
or Theret 7z=11.
erefore z=11. Ans.
EXERCISES

Solve the following, using the principles stated in § 27.
Check your answer for the first five.

3z 1,1 3
1. T45=27% 4 “4—=2.
3+ 4 x+2:t 8
3z—1 2 x2—-3,6z+5 z—3 5
2. —2= .5 T2
2 3 4 + 6 5 z 12 0
5 3%_42-2_; Sz 1_atl_2
"4 5 8 "z z 3z
oo L __ 2 _1
T x4l 3(x+1) 12
1 1 1
8 — ———2=0.
4—6y 2—3y+6
9 1 r+1_r—2
T ri—r—2 r—2 r+l
z+1_z—-3_8
10. z—1 z4+3 =z
11 3 1 2

_x—2=x+2—2-—x.
z4+2_xz—3_  3z48

12. r—4 z—8 22—122+432 -
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13. If 10 be subtracted from a certain number, three
fourths of the remainder is 9. What is the number?

14. Divide 38 into two parts whose quotient is 4.

15. Divide 96 into two parts such that $ of the greater
shall exceed § of the smaller by 6.

16. A man started on a journey with a certain sum of
money. He spent 1 of it for car fares and } of it for hotel
bills. When he returned home he found he had $9. How
much did he start with?

17. I have $100 in one bank and $75 in another one. IfI
have $45 more to deposit, how shall I divide it among the two
banks in order that they may have equal amounts?

18. A motor boat traveling at the rate of 12 miles an hour
crossed a lake in 10 minutes less time than when traveling
at the rate of 10 miles an hour. What is the width of
the lake?

[HiNtT. Time = Distance+ Rate.)

19. A freight train goes 6 miles an hour less than a passen-
ger train. If it goes 80 miles in the same time that a passen-
ger train goes 112 miles, find the rate of each.

20. A tank can be filled by one pipe in 10 hours, or by an-
other pipe in 15 hours. How long will it take to fill the tank
if both pipes are open?

[HiNT. Let z =the number of hours. Then 1/z =the part both
can fill in 1 hour. But, {% =the part the first pipe can fill in 1 hour,
and yig=the part the second pipe can fill in 1 hour. Hence we must
have Coo1_1.1

z 10 15

21. How long will it take two pipes to fill a tank if one
alone can fill it in 5 hours and the other alone in 12 hours?
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22. Two pipes are connected with a tank. The large one
can fill it in 3 hours; the small one can empty it in 4 hours.
With both pipes open, how long before the tank will fill?

28. A does a piece of work in 4 days, B in 6 days, and C in
8 days. How long will it take them working together?

24. A can do a piece of work in 16 hours, and B can do it
in 20 hours. If A works for 10 hours, how many hours must
B work to finish?

26. A’s age is } that of his father’s. 12 years ago he was
% as old as his father. How old is each now? :

26. A boat goes at the rate of 12 miles an hour in still
water. If it takes as long to go 27 miles upstream as 45
miles downstream, what is the rate of the current?

27. An aviator made a trip of 95 miles. After flying 40
miles, he increased his speed by 15 miles an hour and made the
remaining distance in the same time it took him to fly the
first 40 miles. What was his rate over the first 40 miles?

28. A 5-gallon mixture of alcohol and water contains 80%,
alcohol. How much water must be added to make it con-
tain only 509, alcohol ?

[Hint. .50(z+5)=5X.80. Explain.]

29. How much water must be added to 65 pounds of a
109, salt solution to reduce it to an 8%, solution?

30. A train 660 feet long running at 15 miles an hour will
pass completely through the Simplon tunnel in Switzerland
in 494 minutes. How long is the tunnel ?






DESCARTES
(René Descartes, 1596—1650)

Profound student and ranked as one of the greatest leaders of all time in
both mathematics and philosophy. He invented representation by graphs
and was thus led to the discovery and development of the branch of mathe-

matics called Analytic Geometry. He was also much interested in medicine
aad surgery.



CHAPTER VI
GRAPHICAL STUDY OF EQUATIONS

28. Definitions. Let two lines XX’ and Y Y’ be drawn
on a sheet of squared (coérdinate) paper, XX’ being hori-
zontal and Y Y’ vertical. Two such lines form a pair of
coordinate axes. The point-O where they intersect is called
the origin.

Consider any point, as P, and draw the perpendiculars PA
and PB extending from P to the two axes Y ¥’ and XX’
respectively. PA is then called the abscissa of P and PB
is called the ordinate of P. The abscissa and ordinate
taken together are called the coordinates of P.

Fie. 5.

Thus the point P in the figure has its abscissa equal to 3 and its
ordinate equal to 4.

All abscissas on the right of Y Y’ are considered positive,
while all abscissas on the left of Y Y’ are considered negative.

Thus the abscissa of Qis —2; that of Ris —3; that of S is +3.

Similarly, all ordinates above XX’ are considered positive,
while all ordinates below XX’ are considered negative.

Thus the ordinate of Qis +3; that of Ris —4; that of Sis —2.

41
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In reading the coérdinates of a point, the abscissa is always
read first and the ordinate second. Thus, in the figure, the
point P is briefly referred to as the point (3, 4) ; similarly, Q
is the point (—2, 3); R is the point (—3, —4); and S is the
point (3, —2), ete.

In practice, XX’ is commonly called the x-axis, and Y Y’
is called the y-axis.

EXERCISES

[The pupil will find it convenient to use the prepared coérdinate
paper such as usually may be secured at the stationery stores.]

1. Draw axes on a sheet of coordmate paper and then
locate (plot) the following points :

(2’ 4)) ( 37 1)’ (2) 4): (2“%7 —3); (_2%'1 —2]1.');

2. The part of the plane within the angle XO Y (see figure
in § 28) is called the first quadrant, the part within the angle
YOX' is called the second quadrant, the part within X0 Y’
is called the third quadrant, etc. Hence, state in which quad-
rant a point lies when

(a) its abscissa is positive and its ordinate negative,

(b) its abscissa and ordinate are both negative,

(c) its abscissa is negative and ordinate positive.

8. What can be said of the position of a point whose ordi-
nate is positive; whose abscissa is negative?

4. A certain street runs due east and west. It is met by
another street which runs due north and south, thus form-
ing a “ four corners.”” Taking the meeting place of the cen-
ter-lines of the two streets as origin, and the east and north
directions as positive, what are the coérdinates of a flagpole
which stands due northwest from the origin at a distance
of 50 feet from the center-line of each road? Answer the
same when the pole is 45 feet due west of the crossing point.
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6. Plot the following three points and then see if it is
possible to draw a straight line that will pass through all of

them: (1,5); (0,3); (=1, 1.
Do the same for the three points (2, 3); (—1, —1); (5, 0).

~ 29. Graph of an Equation. We have seen in Chapter V
that if we have any linear equation containing a single un-
known letter, as for example the equation 2 z—1=3(z—1),
we can always solve it ; that is we can find the value of z..

Suppose now that we have a linear equation in which
two unknown letters, z and y, appear, that is an equation
in which no term contains both z and y nor any higher power
of either of them than the first, as for example
@ z+y=>.

The meaning of such an equation and the interesting
facts about it are best brought out by graphical methods in
ways which we shall now explain.

In the first place, it is to be observed that such an equa-
tion is satisfied by a great many pairs of values for x and y.
For example, the pair of values (x=1, y=4) satisfies the
equation, because when we put these values for x and y
respectively in the equation, it becomes 14+4=5, which is
true. Again, the same is seen to be true of the pair (zx=2,
y=3) (explain) ; and, similarly, the same is true of any one of
the pairs ($=-%-, y=3%), (=6, y=—1), (x=8, y=-3), etc.
In fact, we can obtain as many such z, y pairs as we wish,
each pair having the property that the z-value and the
y-value taken together satisfy the given equation.

If we place x =3 in the equation above, we have 3+y =5 and this,
when solved for y, gives y =2. Thus (z =3, y=2) is a pair such as
mentioned above. Similarly, we can assign to  any value we wish

(positive or negative) and find from the equation the corresponding
value of y, thus forming a new pair of values of z and y.
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Whenever an equation contains two (but no more) un-
known letters, such as z and y, any pair of values for 2 and
y that satisfy it is called a solution of the given equation.
It follows from what has been shown above that every such
equation has an indefinitely large number of solutions.

Returning to the equation xz+y=>5, let us consider again
the special solutions which we noticed on page 43:

($=2, y=3)’ ($=-}, y=%): (x=-1,y=6), (z=8,y=-3).
Pollowing the ideas brought out in § 28, each of these may
now be plotted as a point, using x as abscissa and y as ordi-
nate. Upon locating these points carefully, it will be seen

that they all lie on one and the same straight line, as indi-
cated in the figure below.

Fia. 6.

This line is called the graph of the equation z+y=>5. It
may be shown that every solution of the given equation gives
rise when plotted to some point upon this line, and vice versa,
every point upon this line has an z-value and a y-value
which, when taken together, form a solution of the given
equation.

30. Graph Determined from Two Points. In practice,
the graph of a linear equation is drawn by locating two points
upon it, and connecting them by a straight line.
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ExaMPrLE. Draw the graph of the equation 5 z—4 y=20.

SoLuTioN. Placing z =0 in the equation gives y=—5. Hence
(0, —5) is a point on the graph.
Placing y =0 in the equation gives z = 4 Hence (4, 0) is a point

on the graph.
Plotting these two points (0, —5) and (4, 0) and drawing (with
ruler) the straight line through them, gives the required graph.

FiG. 7.

NoTeE. As in the example just considered, it is often simplest
to select as the first point the one whose abscissa is 0, and as the
second point the one whose ordinate is 0. However, it is equally
correct to take any two points whose coordinates satisfy the given
equation. If the two points selected are too close to each other,
it is difficult to draw the line accurately ; if this happens, plot a third
point on the line at a considerable distance from the first two.

EXERCISES

1. State (orally) what is true of each point on the line in
the last figure.

[Hint. Its abscissa and ordinate, taken as a pair of numbers,
(z, y), forma....]

Draw the graph of each of the following linear equations.

2 2z—-y=4. 4. 2z4+3y=12. 6. 4z=3y-"7.

3. 2z+4y=2. 6. z—3y=3. 7. 2z=3y.
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8. If a person travels at the rate of 15 miles per hour, the
distance s which he will have traveled at the end of ¢ hours
is given by the formula s=15¢. Draw the graph of this
equation, using the t-values as abscissas and the s-values as
ordinates. From your figure read off (approximately) how
far he will have traveled at the end of (a) 2 hours; (b) 3
hours; (¢) 3% hours; (d) 41 hours.

[Hint. Take the t-axis horizontal and the s-axis vertical, and
let the unit length on each be about half an inch. In order to get
the diagram into relatively compact form, allow each unit on the

s-axis to represent 15 miles, taking each unit on the ¢-axis to repre-
sent 1 hour.]

9. A boy has $10 in the bank when he begins saving at the
rate of $3 a month, adding this amount month by month to
his account. Find graphically how many months must
elapse before his account will amount to $22.

[Hint. Let A represent the amount of the aceount at the end of
t months. Then, A =104+3¢. (Why?) Now draw the graph of
this equation, using {-values as abscissas and A-values as ordinates,
and taking for convenience one unit on the A-axis to represent $2,

while one unit on the t-axis represents 1 month. The problem then
calls for that abscissa which goes with the ordinate A =22.]

10. A boy has $30 in the bank whén be begins spending it
at the rate of $4 a month. Find graphically how long it
will be before he has but $2 left.

[Hint. Use the same letters and units as in Ex. 9.}

11. A wheel is rotating at the rate of 10 revolutions a
second when the power is shut off. The wheel slows down
uniformly and comes to rest at the end of 30 seconds. Make
a diagram from which you can read off how many revolutions
the wheel was making at any given instant after the power
was shut off and use your diagram to determine how many
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revolutions per second were being made at the end of (a) 6
seconds; (b) 9seconds; (c) 18 seconds; (d) 26 seconds.

[HinT. Let r represent the number of revolutions per second at
the end of ¢ seconds. Then the conditions of the problem tell us
that r =10 when ¢ =0, and that r =0 when ¢t=30. Thus we have
two points on the graph, and we can draw the graph completely
without even getting its equation.]

12. The temperature at which water freezes is 32° on the
Fahrenheit scale, but it is 0° on the Centigrade scale. The
temperature at which water boils is 212° on the Fahrenheit
scale, but it is 100° on the Centigrade scale. Make a dia-
gram from which you can read off the Centigrade tempera-
ture that corresponds to any given Fahrenheit temperature.

[Hint. Let F represent the Fahrenheit reading and C the Centi-
grade reading. Then C=0 when F= 32 and C=100 when F=212,
This gives two points. The graph is the straight line joining these
two points.]

31. Simultaneous Equations. Suppose-that, instead of
having a single linear equation containing the two unknown
letters  and y (as in § 29), we have two such equations;
for example

z+y=6and 3z—2y=-2.
Of all the pairs of values (z, ) that
will satisfy the first equation and all
the pairs (z, y) that will satisfy the
second equation, is there a particu-
lar pair (z, y) that will satisfy them
both at the same time? We shall
consider this question graphically. Fia. 8.

Draw the graphs of the two equa-
tions on the same sheet of coérdinate paper, using the same
axes throughout. The lines thus obtained are seen to in-
tersect each other in the point (2, 4). This means that the
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pair (x=2, y=4) satisfies both equations at once, since it
lies on both the graphs. This pair (x=2, y=4) is there-
fore the pair desired, and it is the only such pair because
two straight lines can intersect in but one point.

That this answer is correct is readily seen by substituting this
pair of values in the given equations. Thus, with z=2 and y =4,
the equations become 2+4 =6 and 6 —8 = —2, which are true.

The two equations above illustrate what is known as a
set of simultaneous eguations, and the particular pair of
values (x=2, y=4) which we found would satisfy both the
equations at one time, illustrates what is called the solution
of the set. In general, two or more equations are said to be
simultaneous if they are considered at the same time. In
the present chapter we shall deal only with sets containing
two unknowns, as in the preceding example.

32. Inconsistent Equations. Although two linear simul-
taneous equations in z and y will in general have a solution
(as in § 31), there are cases where no
solution can be found, and indeed
none exists. For example, if we draw
the graphs of the equations

z+y=3, and z+y==6,
we see that the lines do not intersect;
in other words, they are parallel.
Thus, there is no pair of values (z, y)
that will satisfy both equations at
once; that is, there is no solution. Such a pair of simul-
taneous equations is called inconsistent.

F1a. 9.

EXERCISES

Determine graphically which of the following sets of simul-
taneous equations has a solution and which does not. In
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case a solution exists, determine it and check your result by
substituting it in the given equations.

<:c+2y=3, 2. { z+y=3, 3 {x+2y=5,

2 z4+y=3. dz—y=1. r—2y=>5.
[z—2y=86, 5. {4x—y=0, 6 !3x+y=-—2,
\2z—ay=8. 3z+y="T. \9z+3y=1.
{4y—2 z=5, g {s+3t=6,

4z242y=5. s—21t=6.

9. A man starts at a given time and walks along a certain
road at the rate of 5 miles an hour. An hour later another
man starts from the same place and travels in the same
direction at the rate of 10 miles an hour. Find (graphically)
how far from the starfing point they will meet. '

[HinT. If s represents distance (in miles) traveled in ¢ hours,
the first man’s motion is described by the equation s =5 ¢, while the
second man’s motion is deseribed by the equation s=10(t—1).
Now draw a pair cf axes, and draw in the graphs of these two equa~
tions, using t-values as abscissas. The problem then calls for that
value of 8 which belongs to the intersection of the two graphs.]

10. Use your diagram for Ex. 9 to answer the following
question : After how much time will the two men meet ?

11. A man starts and walks along a certain road at the
rate of 5 miles an hour. At the same instant another man
starts out at a point on the same road 15 miles distant and
travels toward the first man on a bicycle at the rate of 10
miles an hour. How far from the first man’s starting point
will they meet? How long will it take them?

12. B and C start to save money. B has $10 when they
begin and saves at the rate of $3 a month, while C at the
start owes $6 and saves at the rate of $7 a month. Find
graphically how soon C will be able to cancel his debt and
have savings equal to B’s, and how much each will then have.

B



CHAPTER VII

SIMULTANEOUS EQUATIONS SOLVED BY
ELIMINATION

’

33. Elimination by Substitution. The process of combin-
ing two equations in two unknowns in such a way as to
cause one of the unknowns to disappear is called elimina-
tion.

We shall consider first the method called elimination by
substitution. The process is illustrated by the following
example.

ExampLE. Solve the system

1) 2z+3y=2,

@) 5r—4y=28.
SovuTioN. From (1),

3) 22z=2-3y.
Therefore

@ £=2531

Substituting .2—_2311 for z in (2) gives

o) o0

Clearing (5) of fractions,

6) - 5(2-3y)—8y=>56.
50
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Simplifying,

() 10-15 y—8 y =56.
Collecting,

(8) —23 y =46.
Therefore ‘

9 . y=-2.
Substituting —2 for y in (4) now gives

_246_
T ) 4.

The required solution of the system (1), (2) is, therefore,
(x=4,y=-2). Ans.
CHEck. Substituting £ =4 and y= —2 in (1) gives
2(4)+3(-2),
which is equal to 8 —6, or 2, as (1) requires.
Substituting z =4 and y = —2 in (2) gives
5(4) —4(-2),
which is equal to 2048, or 28, as (2) requires.

T o solve two stmultaneous equations by substitution :

1. Solve either equation for one of the unknown letters in
terms of the other one.

2. Place the result thus obtained in the other equation and
solve 1t. )

3. Having thus found one cf the unknown letters, substitute
its value in either of the given equations and solve for the other
unknown letter.

34. Elimination by Addition or Subtraction. The only
other method of elimination which we shall consider here is
called elimination by addition, or subtraction. The process is
illustrated by the following example.
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ExaMpLE. Solve the system

(1) 3z+4y=12,

2) 2z—5y=>54.
SovuTioN. Multiplying (1) by 2,

3) 6z4+8y=24.
Multiplying (2) by 3,

(4) 6z—15 y=162.
Subtracting (4) from (3),

5) 23 y=—138.
Therefore

y=—6.

Substituting y = —6in (1), 3 x —24 =12, or, 3 z=36.
Therefore z=12.

The required solution of the system (1), (2) is, therefore,
" (x=12, y=—6). Ans.
CHECK. Substituting 12 for x and —6 for y in (1), gives
3(12) +4(—6)=36 —24=12, as (1) requires.
Substituting 12 for z and —6 for y in (2), gives
2(12) —5(—6)=24130=54, as (2) requires.
Note. Instead of multiplying (1) by 2 and (2) by 3 and then
subtracting them, thus eliminating z, we might just as well have

multiplied (1) by 5 and (2) by 4 and added them, thus eliminating y.
Either plan leads to the same solution for the given system.

To solve two simultaneous equations by addition or subtrac-
tion:

1. Multiply one, or both, of the given equations by such num-
bers as will make the coefficients of one of the letters (say, y)
numerically equal.

2. Subtract (or add) the two equations thus obtained, thus
eliminating one of the unknown letters.

3. Solve the resulting equation for the letter it contains, and
obtain the value of the other letter by substituting the value of
the letter already found into either of the given equations.
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EXERCISES
Solve by substitution :
1 {2x+3y=12, 3 {3x—3y=—5,
‘ z+5y=13. " 13z+4+2y=40.
9 {’ 3z+ty=7, . [5ut4v=0,
" 12z—3y=-10. " {6u—20=—34.
5 {8a+4b=5,
) a—b=4}.
Solve by addition or subtraction :
6 [ 2z—y=5, 7 {2x—52=24, 8 J z4+y=0,
) i5x+4y=19. 3z+52z=11. — |(4z—3y=6.
° A+B=-9, 10 { 10z—3 y=—6,
* |7A-3 B=1. ) 7z4+4y=8.
Solve by either method :
?Z+4_1‘!=6, [3"’_1/4.‘”_-’/:4,
2 3 2 3
11. 2y 1. 13,0y 35—
:v+3=6. 1 3 ==2,
[Hint. First clear of fractions.]
: (2746, s_g 846 11,
| 12 > 3 16. 17 Y
C|8r=s_4 Tl _12_,
12 ’ r y
[HINT To Ex. 16. Do not clear of fractions, but solve for i and %I]
9
2z—5y=—1, 9,10_g
13. i (%Y
z—y 3z+2y_ _4 15_30_ _,
7 23 ) Ty )
6x—8y__8:c—20y_0 1 1 _
=Y 1 )
| 14. 3 5 11 18. “’;1 ygl
Y=y P
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35. Simultaneous Equations in Three Unknown Letters.
We often meet with a system of three linear equations between
three unknown letters. Such a system, like those already
considered (§§ 33, 34), may be solved by elimination.

ExampLE. Solve the system

(1) z+y+2=6,
(2) 22—y+32=9,
3) z+2y—z=2.

SoLuTioN. Eliminate one of the unknowns, say y, from (1)
and (2). Thus

4) 3z+42=15. [(1)+(2)]
Eliminate the same unknown, y, from (2) and (3). Thus

5) 4z-2y+62=18. (2)X2

(6) z42y— 2= 2. (3)

5z +52=20, (5)+(6)
or
@) z42=4.
Equations (4) and (7) contain only z and z and hence may be
solved for these letters, as in §§ 33, 34. Thus

()] 3z+42=15. (4)
9) 3z432=12. (7)X3
z2=3. (8)—(9)

Substituting z=3 in (7), we obtain z+3 =4. Therefore z=1.

Substituting z=3 and £ =1 in (1), we find 14+y+3=6. There-
fore y =2.

The desired solution is, therefore, (z =1, y =2, 2=3). Ans.

To solve three simultaneous equations : -

1. Eliminate one of the unknown letters from any pair of
the equations, then eliminate the same unknown from any other
pair of the equations.

2. Solve the two equations thus obtained, as in § 34.

3. This gives two of the letters, and the third may then be
Sfound by substituting the letters already found in either of the
given equations.
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- EXERCISES
Solve for z, y, and z each of the following sets of equations.
z+2 y+3 z2=14, [x+y—z=0,
1. 2z+y+22=10, 4. 1 z—y=4,
3z+4y—32=2. z42="1.
1,1,1
z—y+2=30, 5+;+;=2,
2 Sy—z—2=12, 2 1.1
7z2—y+2z=141. 5. 5—;+;=7;
. 3,2,5_-
( x-|—y=9’ ;+§+;— 14.
3. (ytz=T, [HinT. See hint to Exer-
2+z=>5. cise 16, p. 53.]

APPLIED PROBLEMS

1. The sum of two numbers is 75 and their difference is 5.
Find the numbers.

[Hint. Let z be one of the numbers and y the other, and form
two equations.]

2. One third of the sum of two numbers is 10, while one
sixth of their difference is 1. Find the numbers.

8. The perimeter of a certain rectangle is 10 inches less
than 3 times the base. If the base is 4} times the height,
what are the base and height?

4. Each base angle of a certain isosceles triangle is 66°
more than the vertical angle. Find each angle.

5. A father’s age is 1} that of his son. Twenty years ago
his age was twice his son’s. How old is each?

6. Four years ago A’s age was 2} B’s age. Four years

hence A’s age will be 1# B’s age. What is the age of
each?
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7. A part of $2500 is invested at 6% and the remainder
at 5%. The yearly income from both is $141. Find the
amount in each investment.

8. One sum of money is invested at 59, and another at
69%. The total yearly income from both investments is
$53.75. If the rates should be reversed, the annual income
would be increased by $2.50. Find the sums of money in-
vested.

9. A and B together can do a piece of work in 12 days.
After A has worked alone for 5 days, B finishes the work in
26 days. In what time could each do the work alone?

[HinT. Let x =the time in which A can do it alone, y =the time
in which B can do it alone. Then the part A can do in one day is :%,

and the part B can do in one day is %y . So the equations become

1 +-1- =L and '§+2(-5 =1. Now solve as in Ex. 16, p. 53.]
z y 12 T y

10. A and B can do a certain piece of work in 16 days.
They work together for 4 days, when B is left alone and
completes the work in 36 days. In what time could each
do it separately?

11. A laborer agreed to stay on a farm for 100 days.
For each day he worked he was to receive $2 and board,
but for each idle day he was to forfeit 75 cents for his board.
When the time expired, he received $180.75. How many
days did he work? ’

12. An errand boy went to the bank to deposit some bills,
some of them being $1 bills and the rest $2 bills. If there
were 38 bills in all and their combined value was $50, how
many of each were there?

[HinT. Let z=the number of $1 bills, and y =the number of
$2 bills, Then their combined value was z+2 y dollars.]
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13. The receipts from the sale of 300 tickets for a musical
recital were $125. Adults were charged 50 cents each, and
children 25 cents each. How many tickets of each kind were
sold? ’

14. A grocer wishes to make 50 pounds of coffee worth
32 cents per pound by mixing two other grades, one of which
is worth 26 cents per pound and the other 35 cents per pound.
How much of each must he use? . 1

16. One cask contains 18 gallons of vinegar and 12 gallons
of water; another, 4 gallons of vinegar and 12 of water.
How many gallons must be taken from each so that when
mixed there may be 21 gallons, half vinegar and half water?

16. Two cities are 140 miles apart. To travel the distance
between them by automobile takes 3 hours less time than by
bicycle, but if the bicycle has a start of 42 miles, each takes
the same time. What is the rate of the automobile, and
what the rate of the bicycle?

17. A boy rows 18 miles down a river and back in 12 hours.
He can row 3 miles downstream while he rows but 1 mile
upstream. What is his rate in still water, and what is the
rate of the stream?

18. A motor boat can run r miles an hour in still water.
If it went downstream for s hours and took ¢ hours to return,
what was the total distance traveled, and what was the rate
of the current? .

19. The sum of three numbers is 20. The sum of the first
and second is 10 greater than the third, while the difference
between the second and third is 6 less than the first. Find
the numbers.

[Hint. Use the three letters z, y, z to represent the unknown
numbers, and form three equations. Solve as in § 35.]
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20. A, B, and C have certain sums of money. B would
have the same as A if A gave him $100; C would have four
times as much as B if B gave him $100; and C would have
twice as much as A if A gave him $100. How much has
each?

21. I have $90 on deposit in bank A, $51 in bank B, and
$75 in bank C. If I have $144 more to deposit, how shall I
distribute it among the three banks so as to make the three
deposits equal ?

22. The perimeter of a certain rectangle is 16 feet. If
the length be increased by 3 feet and the breadth by 2 feet,
the area becomes increased by 25 square feet. What are
the length and breadth?

23. A barrel of vinegar is to be bottled for selling and it is
desired that some of the bottles be of pint size, others of
quart size and others of gallon size. In order that there be
52 bottles in all, and twice as many of the pint as of the quart
size, how many of each will be necessary ?

[HiNT. 1 barrel =32 gallons.]

24. For any pulley block, the relation between the weight
to,be raised and the pull necessary to raise it is

pull =z +y Xweight,

where x and y are numbers that are different for different
pulleys.

In two experiments with a certain pulley block, a weight
of 100 pounds was raised by a pull of 22 pounds, and a weight
of 200 pounds was raised by a pull of 42 pounds. Find the
values of z and y for this pulley.



CHAPTER VIII
SQUARE ROOT

36. Definitions. The square root of a given number is
the number whose square equals that number.

Thus 2 is the square root of 4 because 22 =4. Likewise, 3 is the
square root of 9 because 3?2 =9, ete.

The square root of a number is denoted by the radical sign
V' placed over it.

Thus V4=2, V9=3, V16=4, etc.

The process of finding the square root of a mumber is called
extracting its square root.

37. Extracting Square Roots in Arithmetic. Many times
we can pick out the square root of a number by inspection.
Thus, V144 is seen to be 12 because 122 = 144. Similarly,
V196=14. Butin finding the square root of a large number,
such as 74,529, we cannot ordinarily determine the answer
by mere inspection. The process for such a case is illustrated
below, and is explained on the next page. ’

Process.
4 7'45'29 | 273 Ans.
4
Trial divisor ~ =2X20 =40 [345
Complete divisor=40+7 =47 | 329
Trial divisor =2X270=>540 | 1629
Complete divisor =540+3 =543 Llﬁ_2$_)

50
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ExpLaNATION. First separate the number into periods of two
figures each, beginning at the right. That is, in the present case,
write the number in the form 7/45'29.

Find the greatest square in the left-hand period and write its
root for the first figure of the required root. This gives the 2 ap-
pearing in the answer.

Square this figure (giving 4), subtract the result from the left-
hand period and annex to the remainder the next period for new
dividend. This gives the 345 appearing in the process.

Double the root already found, with a 0 annexed (giving 40) for
a trial divisor and divide the last dividend (345) by it. The quo-
tient (or, in some cases, the quotient diminished) forms the second
figure, 7, of the required root. Add to the trial divisor the figure
last found (7), giving the complete divisor (47). Multiply this
complete divisor by the figure of the root last found (7), giving the
329 appearing in the process. Subtract this from the dividend, and
to the remainder annex the next period for the next dividend. This
gives the 1629 of the process.

Proceed as before, and continue until a new dividend equal to 0
is obtained. In the example above, this happens at once, giving
273 as the required root.

This process is the one commonly used in arithmetic, and
is stated here as a review. We shall see in § 38 that a sim-
ilar process may be used in extracting the square roots of
expressions in algebra.

In the example just solved, the root comes out exact be-
cause 74,529 (whose root is being extracted) is a perfect
square — that is, it is like one of the numbers 1, 4, 9, 16, 36,
etc. If we had started with a number which was not g per-
fect square, the process would be the same except that we
should not finally reach a new dividend which cquals 0.
In such cases, in fact, the process continues indefinitely, but
if we stop it at any point, we have before us the desired root
correct (decimally) up to that point. For example, in find-
ing the square root of 550 correct to two decimal places, the
process is as follows.
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Process.
550.0000 | 23.45  Ans.(correct to two
4 dectmal places)
2x%20=40 | 150
40+3=43 (129

2%230=460 | 2100
460+4=464 | 1856
2 %X2340=4680 | 24400
46804-5=4685 | 23425

975

NoTe. Inthe process above we have first written 550 in the form
550.0000. If we had written it with siz zeros, that is 550.000000,
and then carried the process forward until all these were used be-
low, we should have obtained the root correct to three decimal
places instead of two. In general, the root obtained would be
correct to a number of decimal places equal to half the number of
ze:os added.

Square roots of decimal numbers, such as 334.796, are ob-
tained like those for whole numbers, except that in the begin-
ning the separation of the number into periods of two figures
each must be carried out both ways from the decimal point.

Thus 334.796 would be written 3’34.79’60. Similarly, 3.67893
would be written 3’.67'89’30. The extraction of the root is then
carried out as in the process shown above.

EXERCISES

Find (by inspection or by the process shown in § 37) the
square root of each of the following numbers.

1. 49. 5. 576. 9. 8281.  13. §.

2. 8. 6. 1444, 10. 15876. [Hinr. $=2x3.]
3. 64 7. 4225. 11, 42,025. 14. 4%

4. 169. 8 1681. 13 95481. 15. ok
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Find the square root of each of the following numbers
correct to two decimal places.

16. 567. 19. 17.76. 22. 3.
17. 633. 20. 13. 23. .
[HinT. Write as [HinT. Write. § as
13’.00'00.] .75.) -
18. 1305. 21. 2. 24. .

38. Extracting Square Roots in Algebra,

(a) Monomials. The square root of a monomial can
usually be seen by inspection.

Thus V36 m*nt =6 m?n (because (6 m?n)? =36 min?). Similarly,
49 %428 =T 28y,

(b) Trinomials. If a trinomial is a perfect square, its
square root can be obtained by inspection.

Thus suppose we wish to find the square root of 9 z2+12 zy +4 2.
This trinomial is a perfect square because its terms 9 z? and 4 y»*
are squares and positive, while its remaining term, 12 zy, is equal to
2. V9zx2. V442 (See §11 (d), p. 20.) Hence the trinomial
can be expressed in the form (3 £ 42 y)?, whence the desired square

root of 9 22 +12 xzy+4 y2is 3242 y.

Similarly, V4s*—4s+1 =25—1 because 4s*—4s+1 is a perfect
trinomial square, and as such is factorable into

(2s—-1)(2s—1) or (2s—1)%

(c) Polynomials. To find the square root of a polynomial
of more than three terms we may follow a process much like
that employed for finding square roots in arithmetic. This
is illustrated in the following example.
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ExampLE. Find thesquare rootof 4z4+1223—322—182+9.

ProcEess.
42412 2 —322— 18249 | 22?+32—3

- 4z Ans.
Trial divisor, 4 g2 12 2 —3 22
Complete divisor, 42243 z | 12 2849 22
Trial divisor, 422+62 —1222—-18 z+9

Complete divisor, 4 2246 x—3 | —12 22— 18 z+9

ExXPLANATION. Arrange the terms of the polynomial in the
descending (or ascending) powers of some letter. In the example,
the arrangement is in descending powers of z.

Extract the square root of the first term, write the result as the
first term of the root (giving the 2 2? in the answer), and subtract
its square from the given polynomial (giving the 12 x’ —3 22 in the
second line of the process).

Divide the first term of the remainder by twice the root already
found, used as a trial divisor. The quotient (3 z) is the next term
of the desired root. Write this term in the root, and annex it to the
trial divisor to form the complete divisor (the 4 z2+3 x of the
process).

Multiply the complete divisor by this term of the root, and subtract
the product from the first remainder (giving the —12 22—18 z +9
of the process).

Find the next term of the root by dividing the first term of the
remainder by the first term of the new trial divisor. This gives the
—3 of the answer.

Form the second complete divisor and continue in the manner
above indicated until a remainder of O is obtained.

In the example just considered, only one letter, as «,
appears. A similar process may be employed, however, in
all cases by first arranging the’ expression in descending (or
ascending) powers of some one of the letters.

For example, 4 24 +9 y8 — 12223+ 16 22416 — 24 »*, when arranged
in descending powers of r, becomes

411 —12223 4162249 35—24y°+ 16,
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EXERCISES

Find (by inspection or by the process shown in § 38) the
square root of each of the following expressions. Check
each answer by squaring it to see if the result thus obtained
is the given expression.

1. 442 4. 81 a%h5c"°. 7. 196 p'%™. 10. a2r™.

2. 9 afht. 6. 225 m®nt. 8. minigSrit. 11, O m2nte.
3. 25 %428, 6. 625 risS2. 9. 529 rl%sM, 12, mntr.
13. 242 z+41. 18. 9 m?—6 mx+=x2.
14. 2?—4z+4. 19. z*4zxy+1 4%
16. 4 m®*+12 mn+9 n2 20. 9 22466 x+121.
16. 4 22+4 zy+92 21. (a+b)*—6(a+b)+9.
17. ¢2—4 ac+4 a2 22. r*+22*+3x2+2z+41.

23. 424—12 23413 22—6 2+1.

24, z—-2 2543 2*—4 1343 22 -2 2+1.

25. r*—4%y+8 22 —8 xyP+4 YL

[HinT. See remark at the close of § 38.]

26. 2842 alr2—a'rt—2 a?x8+ad.

[Hint. First arrange in descending powers of z.]

27. 9 22—6 zy+y?+12 z2—4 yz+4 22

28. 9 22+25 y24+9 22—30 zy+ 18 22— 30 ya.

29. z84427—-324—2025—2 2°+4+4+4 22— 16 2+32 23,

39. The Double Sign of the Square Root. We know that
3 is the square root of 9 because 32=9. But we also have
(—38)2=9. Therefore, —3 can also be regarded as a square
root of 9. In other words, 9 has two square roots, +3 and
—3, which are opposite in.sign but otherwise the same.
Similarly, 16 has the two square roots +4 and —4, and in
general, a2 has the two roots ¢ and —a.

The double sign =+ is sometimes used. Thus we say that the
square root of 9is =3. This is merely a brief way of saying that the
two roots are +3 and —3.
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In order to avoid all confusion, it is to be understood here-
after that the radical sign v/ when placed over a number
means the positive square root of that number. If it is de-
sired to indicate the negative square root, it is done by the
symbol — V.

Thus V16 means +4, while — V16 means —4. Similarly, Va
means + Va.

40. Equations Containing Radical Signs. Equations con-
taining radical signs may often be solved by squaring each
member. This is equivalent to multiplying each member by
the same amount, and hence is justified by § 27.

ExamprLE 1. Solve the equation Vz—2=86.

SoLuTioN. Squaring both members gives

z—2 =36,
whence z=38. Ans.
CHECK. V38=2=V36 =6.

ExampLE 2. Solve the equation Vz—1—Vz—4=1.
SoLuTioN. Transpose the Vz —4 to the right; this gives
Vz—1=1+4+Vz—4.
Square both members, using Formula VI, § 10 for finding
a+ vz —4)2. This gives
z—1=142Vz—4+4+(Vz—4),
or
z—1=142Vzr—4+z—4.
Canceling = from both sides and transposing the 1 and —4 to

the left, gives -
2=2Vz—4,0or Vz—4=1,

whence (squaring again)
z—4=12=1.
Therefore z=5. Ans.
Cmeck. V5-1-V5—4=Vv4i-vi=2-1=1,
F
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Note. [t is especially important to check all the answers ob-
tained for equations containing radical signs, since the process of
squaring both members sometimes leads to a new equation whose
roots do not all belong to the first one. Thus, if we square both
members of the equation r =5, we get 22 =25 and this last equation
has —5 as a root as well as 5.

EXERCISES

Solve each of the following equations and check each
answer.

1. Vz42=4. 2. V2z+5=3. 3. V3z—1=2.

4. \/x +7 - '\/; = 1.
[Hint. First transpose one of the radicals to the right side,
as in Example 2, § 40.]

6. Vz+1+Vz+10=9. 7. V324+7—-V22+10=0.
6. V2z2+5—V2z+2=1. 8. V224+54+V2z—3=4.

9. Vi—Vz—8=

2
Vz—8

10. If 16 be added to 4 times a certain number, the square
root of the result is 6. What is the number?

11. If 9 be added to the square of a certain number, the
square root of the result is 5. What is the number?

12. The difference between the square root of a certain
number and the square root of 11 less than that number is 1.
Find the number.

13. Solve each of the following equations.
(@) Vz+4+Vz—4=2Vz—1.
) Vz+i+Vz+2—Viz+5=0.




CHAPTER IX
RADICALS

41. Radicals. Suppose we have a square which we know
contains exactly 2 square feet. How long is each of its four
sides? In order to answer this, we naturally let x represent
the desired length. Then we must have :

T -x=2, or 22=2,
Therefore r=V2ft. Ans. 2 sg.f1,

X=\2

This number V2 cannot be determined =
exactly because it is the square root of a F1a. 10.
number, 2, which is not a perfect square.

However, V2 measures a perfectly definite length, as indi-
cated in the figure. Its value, correct to two decimal places
only, is 1.41.

Such a number as V2 is called a quadratic radical. This
name is used in general to denote the indicated square root
of a number.

Thus V3, V7, V21, V106, V213 are all radicals.

The word radical is also used in connection with other roots
than square roots. Thus V10 means the cube root of 10,
that is the number whose cube is 10.  Similarly, V'6 means
the fourth root of 6, etc. All such numbers represent per-
fectly definite magnitudes, as did V2 in the figure above,
even though we cannot express them exactly in decimal form.

67
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In general, the nth root of any number a is written Va, and
this is known as a radical of the nth order. The number = is
here called the index of the root, and the number a is called
the radicand.

NoTe. When no index is expressed, the index 2 is to be under-
stood. Thus V3 means V3.

The same definitions apply also to algebraic expressions.

Thus V373t and Va?+b* are radicals.

42. Rational and Irrational Numbers. Surds. The posi-
tive and negative integers and fractions, and zero, are called
rational numbers. If an indicated root of a number cannot
be extracted exactly, that is, cannot be expressed exactly as
one of these rational numbers, it is called a surd. Any posi-
tive or negative number that is not rational is called irrational.

Thus V3, V10, V6 are surds; but V9, V3, V5 are rational,
since V=3, V8=2, V& =31.

EXERCISES

Determine which of the following radicals are surds; and
state the index and the radicand of each.

1. V7. 2.V8. 3. V16. 4 V& b Vi 6. V5.
7. V=8,

[HINT. —8 =(—2)3.]

8. V15. 10. V5. 12. V20. 14 V3

9. V27. 11 V16. 13. V32.  16. V8mi(atb).

43. Value of Radicals. Use of Table. To determine the
value of a radical correct to two or more decimal places
usually calls for a rather long process. (See § 37, p. 61.)
In order to save time and labor, the values of those radicals
which are needed most in ordinary life (the square and cube
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Toots) have been printed in a table and placed for convenient
reference at the end of this book. For the sake of complete-
ness, the second and third powers of numbers are also printed
in the table. Just how to use this table is described on page
275, which the pupil should now read carefully. Below are
a few illustrative examples.

Exampie 1. Find V7, using the table.

SovuTioN. The top number in the third column on page 290
(table) gives V7 =2.64575. This value is correct up to the last
decimal figure given, that is to the fifth place. Thus the answer
may be written V7 =2.64575*, the sign + indicating that this value
for V7 is correct up to the last decimal place stated.

Exampie 2. Find V7, using the table.

SorutioN. The top number in the sizth column on page 290
(table) gives V7 =1.91293+. Ans.

ExampLE 3. Find V70.

SovLuTioN. The top number in the fourth ecolumn on page 290
(table) gives V70 =8.36660*. Ans.

Exampie 4. Find V70.

SoLutioN. V70 =4.12129*, from the seventh column, page 290.

Exampre 5. Find V/700.
SoruTioN. V700 =8.87904+, from the eighth column, page 290.

EXERCISES

By means of the table, determine the approximate values
of the following radicals.

1. V6. 2 V60.. 3 V6. 4 V60. 5. V500.
6. V6l.

[HinT. 61=6.10X10. So use the information given for 6.10
in the table.}
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7. V6l. 8. V02, 9.v920. 10. V7.8 11. V7.8

12. Vg2  13. V782.

SoruTioN. 782=7.82X100. Therefore V782 is the same as
V'7.82 except that the decimal point in the root must be moved
one place farther to the right. (See p. 275.) Now, V7.82 =2.79643
(table), so V782 =27.9643. Ans.

14. V561.
[HinT. See Solution of Ex. 13.]

16. V779. 16. V895.

17. V6120.
[HiNt. 6120=6.12X1000. (See p. 276.)]

18. V/5340.

19. V67
[HINT. .67 =4%X6.7 (Now see p. 276.)]

20. V0676

APPLIED PROBLEMS

Use the tables in working the following problems.

1. If the sides of a right triangle are 3 inches and 2 inches

long, respectively, what is the length of the hypotenuse?
[Hint. If z be the hypotenuse, then z? =3242?=13.]

2. A baseball diamond is a square 90 feet on a side. How
far is it from home plate to second base?

3. If the diagonal of a square is 13 feet long, how long is
each side?

4. The dimensions of a certain rectangular field are 103
feet by 337 feet. In going from one corner to the opposite
corner, how much shorter is it to go by the diagonal than to
go around ? :
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6. How long must the radius of a circle be in order
that the area be 12 square inches? (See Ex. 14 (b), p. 6.
Take r=31.)

6. What is the length of the edge of a cube if the volume
is 357 cubic inches?

7. If the volume of a sphere is 440 cubic inches, how long
is its radius? (See Ex. 14 (e), p. 6.)

8. Inthe accompanying figure how
long should the radius of the inner semi- §
circle be in order that the area inclosed g D
may be 132 square feet ? AB=CD=2 feet

Fia. 11,

9. The area A of a triangle in terms
of its three sides, a, b, and ¢, is A =Vs(s—a)(s—b)(s—c),
a+b+c
2

where s= The sides of a triangle are respectively

6 inches, 7 inches, and 9 inches long. What is the area ?

10. Two circular cones have altitudes, h, which are the
same, but their bases have different radii. What is the
ratio of the longer radius to the shorter if the volume of the
one cone is three times that of the other?

[Hint. The formula for the volume of a cone is V = }xr2h, where
h represents the altitude and r is the radius of the base.]

44. Simplification of Radicals. We know that the square
root of the product of two numbers is the same as the product.
of their square roots. For example, V4 X25 is the same as
V4 X V/25, because both are equal to 10 (the first being V100,
or 10, and the second being 2 X5, or 10). In the same way,
V8%3=V8XV3, or simply 2V3. In fact, we have the
following general formula.
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Formula I Vab=Va - Vb.
Again,ﬁisthesameas%becausebothareequalto%.
(Explain.) Similarly, ¥V} may be written -5—_5’ or \;3 So
in general we have the following formula.
Formula II. e _ V?.
b Vb

Formulas I and II enable us to simplify many radical ex-
pressions, as is illustrated in the following examples.
ExampLE 1. Simplify V63.

SovLuTion. Using Formula I, we have

V63 =VIXT=VIXVT=3V7. Ans.

EXAMPLE 2. Simplify V32
SoLuTION. V32=V8X4= 8X\/Z 2V4. Ans.

Exampre 3. Simplify \/§—.

SOLUTION. 8 —ﬁ vax2 \/Zx\/i _2V2 Ans.

21" V37 Vix3 VIxV3 3v3

Exampre 4. Simplify V20 af.
SoLuTION. V20at=V2a*X5=V4asXV5=2aV5. Ans.

Exampre 5. Simplify \/72 2y’

SOLUTION
d2eyt _VEY)XO) _VEY X VAL _24V08 4
28 Va6 2 2 )

Note. It will be observed that in each of the examples above
the process of simplification consists in removing from under the
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radical sign the largest factor of the radicand which is a perfect
square, or perfect cube, as the case may be. Thus, in Example 1,
the radicand, 63, was first broken up into factors in such a way that
9 (which is a perfect square) appears clearly to the eye. Similarly,
in Example 2 (where we are dealing with a cube root) we first write
the radicand, 32, in a form which brings out conspicuously its
factor 8, which is a perfect cube. The first step in all such examples
is, therefore, to get the radicand properly broken up into factors.
This requires good judgment, but becomes very easy after slight
practice and experience.

EXERCISES

1. ByFormula I, p. 72,we have V20=V4Xx5=vV4xV5
=2V/5. Look up the values of V20 and V5 in the table
and thus prove that V20 is the same as 2V/5.

2. Show that Formula I, p. 72, gives V’54=3Vv6 and
verify the correctness of this result by use of the table, as in
Ex. 1.

Simplify each of the following radicals. (See Note in § 44.)

3. V18 6. V125. 9. V54,
4. V24, 7. V108. 10. V/81.
6. VII2. 8. V32.

11. V33

[Hint. First use Formula II, § 44.]

12. V2. 19. V27 A,
13. V9. 16 7kt
14. V162. 20. St
16. V36a®®. 6 a%bVab. Ans. 21 \Slm
16. V8l mn'. ) st

17. V27 2y2. [Bla+b)*cd
18. VA(a+b). 2. 4(a?—b?)
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Write each of the following in a form having no coefficient
outside the radical sign.

23. 2V3. -
SorutioN. By Formulal, § 44,2V3=V4xV3=VI2. Ans.
24. 2V2. 26. 5V5. 26. 2V2.
27. V2. o
_ = V2 V2
[Hixt. Write $v2 =3 =—\Z_), and apply Formula II, § 44.]
28. 1V10. 33. 2gVz—y.  38. $V3.
29. aVbh. Va®%. Ans. 34. mVn. 39. V3.
30. 2V y. 36. 2aVai—b:. 40. 3V3.
31. mnV'5 mn. 36. “‘/’”z . 41. (a—b)V2e.
vV a
a
32. 5 mnvVmn. 37. 5\/% 42. (a-b)V2ec.

45. Addition and Subtraction of Similar Radicals. When-
ever two radicals having the same index have also the same
radicand (or can be given the same radicand by simplifica-
tion) they are called similar radicals.

Thus 2Vv2 and 3 V2 are similar radicals ; so also are V2 and V32
since the last of these may be simplified into 4V2, by § 44. Like-
wise, V3 a2z and V3 b’r are similar, being equal, respectively, to
aV3z and bV3 z, thus coming to have the same radicand.

Whenever similar radicals are added or subtracted, the
result may be expressed in a single term.

Thus 4V345v3=(445)V3=9V3. Ans.
Again, 3V32-2VB8=3X4V2-2X2V2=12V2-4V2

: =(12-4)V2=8V2. Ans.
Likewise,

2vV4 atb+V9atb -~ V16 ab =2 2aVb+3 aVb—4aVvh
=@4a+3a—4a)Vb=3aVh Ans.
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Note. The pupil is especially warned that in general we cannot
write Va+b=Va++Vvb. Thus when a=4, b=9 this would give
Vi13= 2+3 5, which is clea.rly false. Similarly, we cannot write
Va—b=Va—-Vb. ThusV25—-9=Vv16=4,but V25— v9=5-3=2,

EXERCISES

Combine the following radicals.

1. V8+V18+V32. Check your answer by use of
the table; that is show that V'8+V18+V/32, as computed
by the table, has the same value as your answer, similarly
computed.

V108+V27—V75. Check your answer as in Ex.1.
V1284+V'16— V/54. Check as in Exs. 1 and 2.
V72+v32—V50. 7. V32a2—V8a*+ V18 at.
V34 VE4+VIE, 8. V16 a®b*+ V54 a®b’.
V24+V814+V192. 9. V32a—V8a+Viga.
10. V2(z—y)2+V8(x—y)*+ V18(z—y)

11. V2@—y)+V8(z—y)+V18(z—y).

12. Vi4+VI2i+Vi+ VL

13. 2V3—-4V1243V27.

14. V34+Vi4V5E.

— M
SVE-E

L Y

16. \/

X

46. Multiplication of Radicals. We may multiply one
radical, as Va, by another of the same index, as Vb, by For-
mula I of § 44. If n=2, this gives as an important special

case
Va Vb=
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ExampLe 1. Find the product of V2 and V18.
SorLutiox. V2. VI§=V2.18=V36=6. Ans.

ExampLe 2. Multiply V34 V5 by 2v3—+5.
SoLuTION. vV3+ V5
2v3-— V35
2.3+42V15
— 15-5

6+ V15-5=14+V15. Ans.

Examrie 3. Multiply Va++Va—b by Va—Va—b.
SovLution. Va+Va-b
vVa—Va-b
a+Va—ab
—Val—ab—(a—b)
a —(a—b)=a—a+b=>b. Ans.

EXERCISES

Find the following products, simplifying results as far as
possible.

1. V3.V2T. 7. V7-V3.

2. V8.V12, 8. V.1.V0l.

3. V6-v4. 9. (V3—-v?2)(V3+V2).
4. V7.V 10. (2vV3—-V2)(2V3+V?2)
6. V10 -V3.-V2. 11. (V6—V3)

6. Vi.V3. 12. (V7-1)

13. (3V3+2V5)(V3—-3V5).
14. (V2+V34V5E)(V2-V3).

16. Va - Va. 18. (Vz+Vy)(Vz—vy).
16. Vab - Vaibd. 19. (Va—Vh)
17. Vary - Vay. 20. (V2z24+VOy)r
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21. (2Vz+43Vy)(3Vz—2VYy).
22. Find the value of z2—4 z—1 if z=24V5.
23. Find the value of 2243 z—2 if :c=\/—1;:§.

24. Does V342 satisfy the equation 22—4 z+1=0; that
is, is the equation true when z=v3+2? Answer the same
question when z=V3+V2.

47. Division of Radicals. We may divide one radical, as
Va, by another of the same index, as Vb, by the Formula IT
of § 44. If n=2, this gives as an important special case

Va_.la.
vb ‘b
EXERCISES

Express each of the following quotients as a fraction under
one radical sign, and reduce your answer to simplest form.

1 V15,
V3
vii (G
SoLUTION. 7:;_5 =V13—5 =v35. Ans.
2. \/._3_0 3. ﬁ
V5 V12
L Y2 g VB o VE g VEB o VEE—)

& "V o Ve VG
9. Val4z—20+-Vz+5.

10. V8149 a’+a*+Va'—3 a+9.

11, Vrb—ys+Vdi4p,

12, V'4+2125—2 244222 —1+-Vz+1.

13. V22411 430+ Vr*+6.




CHAPTER X
QUADRATIC EQUATIONS

48. Quadratic Equation. An equation which contains
the unknown letter to the second (but no higher) power is
called a quadratic equation, or briefly, a quadratic.

Thus the equations 21 —4z =1 and } z*+z = —3 are quadratics,
but 2 —-3=0 and 4 z* —5 22+ =2 are not.

49. Pure Quadaratic. When the quadratic contains the
second power only of the unknown letter, it is called a pure
quadratic.

Thus 2 22 —27 =0 and az? = bc are pure quadratics, but 22 —4 z =2
and z?+bzx+4c =0 are not.

50. Affected Quadratic. When the quadratic contains
both the first and second powers of the unknown letter, it is
called an affected quadratic.

Thus x243 2z =7 and 22+2 axr =a? are afiected quadratics, but
2 z2—7=0 and 5 22 —16 a?)? =c? are not.

61. Solution of Pure Quadratics. The following example
will suffice to show how the solution of any pure quadratic
may be obtained.

ExampLe. Solve 2 22—30=0.
SoLuTioN. Transposing and dividing through by 2 gives 22 =15.
Taking the square root of both members gives z = = V15, Ans.
To get the approximate value of V15, we may consult the table,
where we find V15 =3.87298+.

The answer may, therefore, be written in the form x = =3.87298+.
Creck. 2(V15)2—30=2X15-30=30—30=0, as required.

2(—V15)2—30 =2 X15—-30=30—30 =0, as required.

78



X, §51] QUADRATIC EQUATIONS 79

NoTe. Strictly speaking, when we extract the square root of
both members of the equation z? =15 we get =z = =+v15. But to
say that —z = = V15 means the same as +2z = = V15, so it suffices
to write simply z = = V15 to cover all cases.

An examination of the example above shows that we have
the following rule.

To solve a pure quadratic, solve for x?, then take the square
root of the result. There will be two solutions, the ome being
the negative of the other.

EXERCISES

Solve each of the following equations, checking your
answer for the first five. If you meet with a radical, find its
approximate value by use of the table.

3 1

1 22—-81=0.
1 2 =14 :
2. 322—192=0. ¥+ 2e-5
1. 1
3. 4224+8=10x2-16. 12. 1 11—z 8+:c+l
4. 312—15=0. z+3 ,22-1
13. - =0.
2z+1+ -3 0
5. 322—16=0. 2it] 2g-1
2 a:
6. 32°—17=0. W ST T 2
2 2 . 2 z4+2 z?+4z—3
7. T_Z _q9 g, Boxt2 =4,
7 8 1 r—2 z+3
g ¥T=8__6 | 16. V2 zritr=x+3.
6 =z+8 [HinT. See § 40.]
3,z—3 ;
9. 2+3 ;+3 =4. 17. V(z+3)(z—5)=Vv49—-2z.

10. (z+1)2—2(z+1)=4. 18. V25—61+V25+6z=8.
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APPLIED PROBLEMS
1. What numbers are equal to their own reciprocals?

2. One side of a right triangle measures 3 inches and the
hypotenuse measures 7 inches. Find (approximately) the
length of the other side.

[HinT. Work by algebra, making use of the principle that in
any right triangle the square of the hypotenuse equals the sum
of the squares of the two sides.]

3. What is the length of the longest umbrella than can
be placed in the bottom of a trunk the inside of which is 33
inches long by 21 inches wide?

4. A certain square has a side which is three times as long
as the side of another square. If the difference of their areas
is 72 square feet, how long is the side of each?

6. Find the mean proportional between 25 and 9; also
that between 17 and 21. In what particular is the latter one
essentially different from the first one?

6. It is proved in geometry that whenever a perpen-
dicular is drawn from a point on a semicircle to the base,
as PQ in Fig. 12, its length is a mean Q0B
proportional between the segments AP
and PC of the base; that is,

AP_PQ ;
PQ PC Mg ¢
If AP=8 inches and PC =10 1nches, Fra. 12.
how long is PQ?

7. Determine the formula for

(a) The side of the square whose area is a.
(b) The radius of the circle whose area is a.
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(¢) The radius of the sphere whose area is a.

[HINT. See Ex. 14, p. 6.]

(d) The diameter of the base of a circular cone whose
volume is v and whose altitude is h.

[Hint. The volume of a circular cone is equal to the area of its
base multiplied by % its altitude, i.e., V =4} xr?h.]

8. The distance s, measured in feet, through which an
object falls in ¢ seconds when dropped vertically downward is
given by the formula s=4 g¢;, where g=32 (approximately).
Hence, determine (approximately) how long it will take a
stone to drop to the bottom of a mine 300 feet deep.

9. One of the sides of a certain triangle is m units long.
What is the formula for the corresponding side of a similar
triangle whose area is n times as great?

[Hint. It is shown in geometry that if two geometric figures are
similar; that is, have the same shape but are of different sizes, then
the square of any line in the first figure is to the square of the cor-
responding line in the second figure as the area of the first figure is
to the area of the second.]

10. A map of the United States is uniformly enlarged in
such a way as to cover twice as much area on the paper as
before. By what factor should the scale of the map be now
multiplied ?

11. Find three consecutive integers such that the square
of the second plus the product of the other two equals 31.

[Hint. Let z be the second integer. Then the first and last
integers will be z —1 and z +1 respectively.]

62. Solution of Affected Quadratics by Factoring. Itisa
familiar principle of arithmetic that the product of two
numbers is zero if either of the numbers is zero; that is, if
either factor is zero.

For example 2 X0=0, 0X4=0, (—-3)X0=0, ete.
[¢]
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This principle is frequently used to solve affected quadratic
equations.

ExampLE. Solve by factoring the equation x2+8 z=48.
SoLuTioN. Transposing all terms to the left, we have
124+-8x—-48=0.
Factoring,
2248z —48 = (z —4)(z +12). [§ 11 (¢)]
Thus the given equation becomes
(x—4)(z+12) =0.

This equation will be satisfied, according to the principle men-
tioned above, whenever the factor z —4 equals zero or the factor
z+12 equals zero, that is in case t—4=0.or £+12=0. Solving
these two simple equations gives xr=4 and z= —12, which must
therefore be the desired solutions. .

CHECK. When z =4 the left side of the original equation becomes
42 4-8 X4, which reduces to 16 +32 =48, as the equation demands.
When z=-12 we have in like manner

(—12)24+8X (—12) =144—96=48.

We thus have the following rule.

To solve quadratics by factoring :

1. Transpose all terms to the left so as to have O on the right.

2. Factor the left member of the resulting equation.

3. Place each factor equal to 0 and solve the resulting stmple
equations. The two results are the solutions regquired.

EXERCISES

Solve each of the following equations by factoring, checking
your answer in the first five.

1. 22—7 z+10=0. 3. x’+8x=;15.
2. 22—5x=—6. 4 224+7x—30=0.
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6. r®+44x=0. 11, ¥=2_2+3_ _20 .

6. 1—6r2=2x. S a+2 23 3

7. 5z424=z2 12. (z+4)(z—2)=11(z—2).

[HinT. Write as

8. 2?—1=3(z+1). (z—-2)[(z+4) —11] =0,

9 z— 5 _ 0 then apply the principle in § 52.]

T 4 13. 3(z+1)(z—3)+4(z—3)=0.

100 ¥ —__4 _5 14 (z4+1)4+3(=z+1)+2=0.
r—2 z—2 [HinT. Solve first for z+1.]

63. Solution of Any Quadratic by Completing the Square.
We often meet with a quadratic, such as 2247 z—5=0,
which we cannot solve asin § 52 by factoring. The difficulty
here is that we cannot factor readily 22+7 £—5. However,

- this quadratic and all others (whether solvable by factoring
or not) can besolved by a certain process known as completing
the square. How this is done will be best understood from a
careful study of the following examples.

ExampLE 1. Solve 2246 2=16.

SoLuTioN. The first member of this equation, or 246 z, would
become a trinomial square [§ 11(d)] if 9 were added to it. Qur
first step, therefore, is to add 9 to both members of the given equa-
tion, thus ‘‘completing the square’’ in the first member and giving
us the equation 2246 2 +9 =25,
or (x+3)2=25.

Taking the square root of both members of the last equation is
now an easy process and gives

z+3 = =5.

'I‘Lerefore we must either have x+3 =5, or x 4+3 = —5.

Solving the last two equations gives as the desired solutions
z=2and z=—8. Ans.

CHECK. Substituting 2 for z in the first member of the given
equation gives 22+6 X2, which reduces to 4+12=16, as desired.
Similarly, with z equal to —8, the first member of the given equa-
tion becomes (—8)2+6 X (—8), or 64 —48, which reduces to 16 as
required. )
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ExamrLE 2. Solvex?—8 z+14=0.

SoruTioN. Transposing, z2—8 z = —14.

Completing the square by adding 16 to both sides gives

22—8z+16=2, or (x—4)*=2,

Taking the square root of both members,

z—4==V2,

Solving the last two equations,

z=44+V2andz=4— V2. Ans.

CrECK. With z =4+ V2, the first member of the given equation
becomes (4+ V2):—8(4+ v2)+14. By Formula VI of § 10 this
may be written

(16+8V2+2) —8(4+V2)+14, or 16 +8V2+2-32-8V2+14.

Here the 8V2 and the —8 V2 cancel, while the rest of the expres-
sion (namely 16 4+2 —32+414) reduces to 0, as required.

Likewise, when z has its other value, namely z =4 — V2, the first
member may be shown to become 0.

Note. Since the solutions obtained above for Example 2 con-
tain the surd V2, they cannot be expressed exactly (see § 37), but
we can express their values approximately. Thus, the table gives
V2 =1.41421* so that the two solutions become 4+1.41421+ and
4 —1.41421%, which reduce to 5.41421+ and 2.58579*. Ans.

ExampLE 3. Solve 3 2248 2=15.

SovLuTtioN. Dividing through by 3 so as to have +1 as the co-
efficient of z2, the equation becomes

' z?4 §z =5.
Completing the square by adding (4)? (or 42) to both sides gives
B+§z+(§r=5+32 =02,

or, (z+4§)2 =51

Taking the square root of both members,

zty= V= <3VEL
Therefore, the two solutions are
z=—4+3V6l and z= —4 -} V6l

These two answers may be written together in the condensed

form z =%(—4= V1) and by looking up the value of V61 in the

tables, these values of £ may be determined approximately, as in-
dicated in the Note to Example 2.
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64. Summary and Rule. It is now to be observed care-
fully that in each of the three examples just considered
(§ 53) the first step in the solution consists in reducing the
given equation to the type form

, ?+pzr=q,
where p and ¢ are given numbers.

Thus, in Example 3, we first put the equation 3 248 z =15 into
the form z2+§ z=5. Here p=4§, and ¢=5.

The next step is to complete the square. This is done in
each case by adding to both members the square of half the
coefficient of z, that is we add (p/2)? to both members.

Thus, in Example 3, we had p=§, so we added (4)? to both
members.

After this, the equation is such that we can extract the
square root of the left member, and when we do so and
equate results, we obtain two simple equations, each
yielding a solution of the given quadratic.

This may now be summarized in the following rule.

To solve any quadratic :

1. Reduce the equation to the form

r*+pr=q.

2. Complete the square by adding (p/2)? to both members.

3. Extract the square root of both members of the new equa-
tion and equate results. This yields the two solutions desired.

EXERCISES

Solve each of the following equations, checking your answer
in the first five.

1. 22-5zx=14. 6. 8 x=22—180.
2. 12—20x=21. 7. 22422 r=—120.
3. 22—1224-20=0. 8. y*=10—3y.
4. 22—22z=11. 9. z2—11 x+28=0.
6. 22—3x—5=0. 10. 6 22—52—6=0.
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11. 2 224+5242=0. 9 2

16. —4—-—3x=—1.
—3 =2 2
12, 1-3 =2z i :v’—-24=10
13. 2z(z+4)=42. Tz )
72
— 2= 18- —=X.
14. 3r—2)?=6z+11. 7—6
15 x—3,x2—6
. _—= 6. 19. —_— =
16 x+z 1 a:+5+x—2 G

66. Solution of Quadratics by the Hindu Method. A
simple way preferred by many for completing the square in
any quadratic is the one called the Hindu method. It con-
sists of two steps:

1. Multiply both members by four times the coefficient of 2.
2. Add to both members of the new equation the square of
the original coefficient of x.

ExampLE. Solve 222—3 z=2.

SorLuTtioN. Multiplying through by 4 times the coefficient of
7% that is by 8, gives 16 22 —24 £ =16.

Adding the square of the original coefficient of z to both sides,
that is adding (—3)?%, or 9, to both sides, gives

16 22 —24 £ 49 =25.

The first member is now a perfect square, being equal to (4 z —3)2.
Therefore, extracting square roots, we obtain

4z—-3=5 and 4 z-3=-5.
Solving the last two equations gives r=2 and z=—4. Ans.

EXERCISES -

Solve each of the following quadratics by any method.

1. 92246 x=35. 4. 16 22—7 xz—123=0.
2 42°—12zx=27. 6. 16 2’48 x=1.
3. 422—x—3=0. 6. 2522—9x=16.
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7. 22246z=4. 17. 3 z24-2—200=0.
[HiNT. First multiply both 1 5

numbers by 2 ] 18. x+—=§-

8. 312—2z=5. r

9. 3224+72—110=0. 19. L5_x;5=g.

10. 522—7 z=—2. = 1" i

11. 1-3z=2z 20, % 41.TT<2,

32=2z 422 2z

12. 422—32z—2=0.
13. 22243 2=27.
14. 3 22—7z+2=0.

21. z+V2z+3=6.
[HinT. Proceed as in §40.]

16. 4 22—17 2= —4. 22. Vz+1—-Vzr—2=v2z—5.
16. 8 z=2z2—180. 23. Vz—14V10—z=3.

656. Solution by Formula. Every quadratic is an equation
of the type form ax’+b:c+c=0,
where a, b, and ¢ are given numbers. We may solve this
equation as it stands by the process of § 54. Thus,
ax*+-br=—c.
Dividing: through by a,
c

b
242 . __ L
x+ax a

Adding b/(2 a)? to both sides (§ 54) gives

b b\? b\ ¢ b c¢_b*—4ac
2 —_—_— =" —_——
T+ x+<2a> (20.) a 4a% a 4 q?

Extracting the square root of both members,
x+—— i\/bz 4ac_+Vb—

4 q? 2a
Transposmg the term b/(2 a), we thus have the following
formulas for the two roots:
—b+ VP —4ac —b—Vb—4ac,

*=—gq wd*= 2a
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Note. Observe that these formulas express the values of z
tn terms of the known letters a, b, and c, as should be the case. Thus,
in any example, we have only to put the given values of a, b, and ¢
into the formulas in order to have at once the desired values of the
two roots.

ExampLE. Solve by formula 2 22—3 z=2.

SoLuTioN. This equation may be written 22*—3 z—2 =0.
Hence the values of a, b, and ¢ in this case are as follows: a=2,
b= -3, c=—2. Placing these values in the formulas gives as the

roots
p=—(=3)+ V(=87 —4Q2)(=2),
2.2
and ,=—(—3)—~/<2—32)’—4(2)(—2)
Simplifying,z=3+\/‘f+16=3+;/2—5=31'5=2,
=3=V9+16_3-5_ 1
and T4 & 2

The two roots are, therefore, =2 and z=—4. Ans. (Com-
pare solution in § 55.)

EXERCISES

1. Solve by the formula Exs. 13-17, p. 87.
2. Solve by the formula the equation 3 22—6 z+2=0.

[Hint. The roots are found to be z=1+3Vv3 and z=1-}V3.
This quadratic thus has roots which necessarily contain radicals.
From the table of square roots at the end of the book, we find
v3=1.73205. Hence, the roots, correct to five decimal places, are

1+% and 1 _1.;735@, which reduce respectively to 1.57735
and 0.42265. Ans.]
3. Solve by the formula the equation 22—5 z+3=0, and
use the tables if necessary to determine the roots decimally.
4. Solve by the formula the equation 4 22—3 £ —2=0, ex-
pressing the roots decimally correct to five places.
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APPLIED PROBLEMS

[The method of solving quadratics by formula (§ 56) is usually
the most direct.]

1. The square of a certain number is 4 less than five
times the number. Find the number.

[HinT. Remember that there should be two solutions.]
2. Divide 20 into two parts whose product is 96.

3. One side of a right triangle is 2 inches longer than the
other. If the hypotenuse is 10 inches long, how long are the
sides?

[HinT. Letting z represent the shorter side, the equation here
becomes z?+ (x+2)? =100, and in solving this we find that one of
the solutions is negative. But a negative solution can have no mean-
ing in such an example as this, so we keep only the positive solution.
This frequently happens in applied problems involving quadraties,
so the pupil must always be on his guard to keep only such solu-
tions as can actually fit a given problem.]

4. A gardener spades a bed 30 feet long by 20 feet wide.
He then decides to double its size by adding a border of uni-
form width throughout. How wide must .

the border be made? i
20| |

5. In Example 4 suppose that instead of 30’ i
doubling the area, the gardener wishes merely i---- T i

to add 200 square feet to it. Show that the
strip added around the outside must then be made a little
over 1.86 feet wide.

6. A circular swimming pool is surrounded by a walk 4
feet wide. If the area of the walk is one fourth that of the
pool, find (approximately) the radius of the pool. (Take
7=3%.)
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7. If atrain had its spced diminished by 10 miles an hour,
it would take it 1 hour longer to travel 200 miles. What is
the speed ?

8. A circular curbing touches the line of
the street curbing on each of two streets

o
>
@

>
1
|
x|
1
H
O¥emze-

that meet at right angles. In Fig. 14, the

/ middle point of the circular curbing is
R Py marked M. The point at which the
Fie. 14. straight curbings would meet if extended

is marked P. If PM =5 ft., find the radius (z in Flg 14) of
the circular curbing.} -

9. The figure represents a pattern fre-
quently used in window designs, consisting of
a square ABCD with a semicircle EFG
mounted upon it, the diameter GE of the
semicircle being slightly less than one of the
sides of the square. If the shoulders AG and
DE are each 1 foot long, how long must each
side of the square be made in order that the total lighting
surface shall be 88 square feet ?

10. A soap bubble of radius r is blown out until the area
of its outer surface becomes double its original value. Show
that the radius has thus been increased by an amount & given
by the formula h=r(1/2-1). [HinT. See Ex. 14 (f), p. 6.]

N
N
N
N
N
N
!
{
N

Fia. 15.

67. Graphical Solution of Quadratics. Consider the
quadratic 22—3 z—4=0. Let us represent the left member
by the letter y; that is, let us place :

y=22—3 z—4.
Now, if we give to z any value, this equation determines a

t This problem suggests a practical plan for finding the radius
of circular eurbings when the center O of the circle cannot be reached.
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corresponding value for y. For example, if =0, then
y=02-3X0—-4=—-4. Again, if z=1, then y=12-3x1-4
=—6. The table below shows a number of z-values with
their corresponding y-values, determined in this way.

Whenz= | O
“theny= | —4

1] 2
-6| -6

3 | 4 5 6| -1|-2|-3
-4 0 6 |14 0 6 14

The graph is now obtained by draw-
ing an z-axis and a y-axis, as in § 28,
then plotting each of the points z, y
which the table contains, and finally
drawing the smooth curve passing
through all such points. The form of
the graph thus obtained is indicated in
the adjoining figure. Observe that this
graph is not a straight line and is there-
fore different in character from the graph
of a linear equation. (See §29.) And
it is especially important to notice that
it cuts the z-axis in fwo points whose
z-values are —1 and 4, respectively.
These two values of z determined
in this purely graphical way are the ‘
two solutions of the given quadratic, 22—3 z—4 =0, for they
are those values of  that make y=0, that is that make
2—3z—4=0.

The graphical study which we have just made of the
special quadratic 22— 3 x—4 =0 leads at once to the following
more general statements.

Every quadratic has a graph which is obtained by first placing
y equal to the left member of the equation (it betng understood
that the right member is 0), then letting x take a series of values

Fic. 16.
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and determining their corresponding y-values, plotting the
points, x, y, thus obtained and finally drawing the smooth curve
through them.

The z-values of the two points where the graph cuts the z-axis
will be the roots of the given quadratic.

EXERCISES

Draw the graphs of each of the following quadraties, and
mnote where each cuts the z-axis. In this way determine
graphically the solutions, and check the correctness of your
answer by actually solving by one of the methods explained
in §§ 54-56.

1. 22—2—2=0. 2. 2*—72+12=0. 3. 2?+7z2+412=0.

4. 22—5z2=-—6.
[Hint. Remember to write first as 22 —5 z 46 =0.)
6. 2243 z=10. 6. 22243 2=9.

68. Quadratics Having Imaginary Solutions. Consider
the quadratic 22=—1. This is a pure quadratic (§ 49) and
hence can be solved immediately by merely taking the
:square root of each member. This gives as the required solu-
tions z=+VvV—1 and z=—V—1. But V—1 means the
number whose square is —1, and there is no such number
among all those (posttive or negative) which we have thus far met.
In fact, we know that the square of any number, whether the
number be positive or negative, is positive [§ 2(d)]. There-
fore, in any such case as this, we say that the solutions are
imaginary, and we speak of the numbers themselves which,
like V' —1, enter into algebra in this way, as imaginary
numbers. They are imaginary, however, only in the sense
‘that they have not been encountered before.
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As an example of an affected quadratic having imaginary
roots, let us consider the equation z2—6 z+15=0. When
we proceed to solve this by the method of completing the
square, as in § 54, the work is as follows.

Transposing, we have

z2—6z=—15.
Adding 9 to both sides to complete the square,
22—624+9= -6, or (r—3)2= —6.

Extracting the square root of both sides,

z—-3==vV—6.

Therefore the solutions are

z=3+VvV—-6andz=3—-V—=6. Ans.

Both of these solutions are seen to be imaginary because they
contain the expression vV —6.

69. Definitions. A number like 34V —6 or 3—V —6 is:
frequently called a complex number in distinction to such a.
number as vV —6, which is called a pure imaginary. Thus, a.
complex number is a combination of a positive or negative:
number with a pure imaginary.

All numbers considered in the chapters preceding this:
(including irrationals) are called real numbers in distinction.
from the imaginary numbers just described. Thus, the solu-
tions of all quadratics considered in §§ 54-56 are real instead.
of imaginary.

EXERCISES

Find (by solving) whether the solutions of the following:
quadratics are real or imaginary.

1. 224+9=0. 8. 22?4-2143=0. b. z>=—4(z+3).
2. 22—6z4+10=0. 4. 3 2?42 z=4. 6. 42>—324+2=0.
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60. Determining Graphically Whether Solutions are Real

or Imaginary.

It was shown in § 58 that the solutions of

the quadratic 22—6 z= — 15 are imaginary. Let us now see
what corresponds to this fact in the graph.

The table below shows several values of z and their corre-
sponding y-values, as determined from the given equation

y=x2—62415.

When z =

-1 0| 1{2 | 3] 4 5| 6

then y =

22115({10{7 6|7 ([10]15

FiG. 17,

Plotting the various points (z, y) thus
obtained and drawing the curve through
them gives the graph indicated in the
accompanying figure. This graph is es-
sentially different from those met with
in § 57 in one particular, namely it does
not cut the z-axis.

A similar result holds for the graph of
every quadratic whose solutions are
imaginary. Therefore, in order to tell
whether the solutions of any given quad-
ratic are real or imaginary, we need only
draw its graph and note whether or not
it cuts the z-axis. If it does, the solu-
tions are real ; if it does not, the solutions
are imaginary.

EXERCISES

Find by drawing the graph whether the roots of each of the
following quadratics are real or imaginary.

1. 2242 2+3=0.
2. ’4+2xr-3=0.

3. z2—22+3=0. b. 6x2+5x+1=0.
4 3224+42+1=0. 6. 222—3 z+4=0.






LAGRANGE
(Joseph Louis Lagrange, 1736-1813)

Famous for his discoveries in all branches of mathematics and regarded as
the greatest mathematician of the 18th century. In algebra he gave much
attention to the study of equations and determinants, extending and unify=-
ing the work of previous mathematicians in these fields. .
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PART II. ADVANCED TOPICS

CHAPTER XI
® LITERAL EQUATIONS AND FORMULAS

81. Literal Equations. Equations in which some, or all,
of the known numbers are represented by letters are called
literal equations. The known letters are generally repre-
sented by the first letters of the alphabet, as a, b, ¢, etc.
Literal equations are solved by the same processes as numeri-
«cal equations.

Exampre. Solve. the following literal equation for z :

ar=bzx+7c.

SoruTION. Transposing,

Y. ar—bx =7 c.
"Combining like terms,
(a—b)xz=T7c.
Dividing by (a—b),
- S Ans.

Cueck. Substituting the answer for x in the given equation,
7¢ ) _ ( 7c¢ )
— ) =b .
“ (a -=b a-—b +7e
Multiplying by (a ~b),

7 ac=T7bc+7 c(a—b) =7 bc+7 ac—T7 be.
Transposing,

7 ac—7 ac="7 bc—7 be.
Simplifying, 0 =0, which is a correct result.
95
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It is to be carefully observed that a literal equation is said
to be solved for the unknown letter, as x, only when that
letter has been expressed in ferms of the other (known)
letters. Thus, in the example above, we obtained z in terms
ofa,b,and ¢. This when once done, is what we mean by the
solution.

Note. If a literal equation is satisfied no matter what wmalues
be given to the letters appearing in it, it is called an identity. Thus
2? —a?=(z —a)(z+a) is an identity. This fact is often expressed by
means of the symbol =. Thus, 2?—a?=(z—a)(z+a). Likewise,
(x+a)=22+4+2 az+a?, (r—a)*=z?—2 az+a?, ete.

EXERCISES
Solve for z in the following, checking your answer in the
first five.
1. z—a=b. 9. -—+b —+a
2. arx—1=b.
8. az+bz=c. 10. £+—=e.
4. 3z+b=x-30. cz dx
6. 43b—2)=3(2b+x). 11. u+a=x——1.
6. (z—a)(z—b)=2x(z+c).
1 = Om—— —
7. m—a. 12. +x+2
g 2 +ll=2_ 18. D1v1de a into two parts

whose quotient is m.

14. If A can do a piece of work in a days, and B can do it
in b days, how long will it take them working together? (See
Exs. 23, 24, p. 40.)

15 { 3z+5y=2a,

" 12z—-3y=4b.

[HinT. These are simultaneous equations, to be solved for the

two unknowns z and y in terms of a and b.]

\
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ax—by=2, {3aa:+2 by =ab,
16. {c:c+dy=3 17. az—by =ab.
¥ii11
z y b
{HinT. Solve first for 1/z and 1/y. See Ex. 16, p. 53.)
2_..12=_1,
19. : Y
2_8_ 1.
r Yy
20. ax?—c=1.

[Hm'r. See § 51. Ans. z= = ‘i]
a
21. ax*+a*=>5 a*—3 ax?.

22.

QIR

23. — ——=0.
24. (z+a)(z+b)+4(x+a)=0.
[HinT. Solve by factoring.]

26. 22—axr=2 a’.
[HiNT. See § 54, p. 85. Ans. £=2a, or 2= —a.]

26. 4 22=7 m*—12 mzx.
27. 22— (a—b) x=ab.
28. z*4ar=ac+cr.
29. =4 ar—2 a.

30. Vz—a+Vb—z=Vbd—a.

97
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62. Formulas. If a person travels for 10 hours at the
rate of 15 miles an hour, the distance he travels is 15 X10=
150 miles. Stated in general (algebraic) language, we can
say in the same way that if a person travels for ¢ hours at the
rate of r miles an hour, the distance s he travels is

s=rt.

This is a literal equation expressing the value of s in terms
of rand t. If we wish, we can solve it for ¢, giving t=s/r, and
what we now have is ¢ expressed in terms of sand r. Or, we
can solve the original equation for r, giving r=s/t, and this
cxpresses r in terms of s and ¢.

These examples illustrate the important fact that in
nearly all branches of knowledge, especially in engineering,
geometry, physics, and the like, there are general laws which
are expressed by means of mathematical formulas. Such
formulas are merely literal equations in which two or more
letters appear, and it is often desirable to solve them for some
one letter in order to express its value in terms of the others.

EXERCISES

1. The area A of a rectangle whose dimensions (length
and breadth) are a and b is given by the formula A =ab.
Solve this for a; also for b. In each case state in terms of
what letters your answer is written.

2. The formula for the area A of a triangle whose height
(altitude) is h and whose base is a is A =4 ah. Solve for a;

b also for h.

8. Solve for b in the formula
A=%h(B+b).
(Formula for the area A of a trapezoid whose
Fia. 18. bases are B and b and whose altitude is h.)
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4. Solve for r in the formula A =mr2. (Formula for the
area of a circle whose radius isr.)

6. The interest I which a principal of p dollars will yield
in ¢ years at 7% is determined by the formula

_prt,
I 100
Solve this for 7 and use your result to answer the following
question : What rate of interest is necessary in order that $50
may yield $6 interest in 2 years’ time?
[HinT. Solving for r gives at once
1001
pt
Now see what the right member of this equation becomes when
1=6, p=50, and t=2.)

6. Using the interest formula of Ex. 5, solve it for ¢ and
use your result to answer the following question: How long
will it take $600 to yield $63 interest if invested at 69,?

7. The velocity of sound », in feet per second, is given
by the formula vy=1090+41.14(¢—32), where ¢ is the tem-
perature of the air in Fahrenheit degrees. Find

(a) The velocity of sound when the temperature is 75°.
(b) The temperature when sound travels 1120 ft. per sec.
8. Derive formulas for each of the following statements.
(a) The number N of turns made by a wagon wheel d feet
in diameter in traveling s miles.
(b) The number N of dimes in m dollars, n quarter dollars,
and ¢ cents.

9. An automobile travels for T hours at the rate of v
. miles per hour. By how much must this rate be increased
" in order to make the same journey in £ minutes less time?

10. A has $a and B has $b. Between them they give $c
to a certain charity, after which the amounts of money they
have are equal. How much does each cortribute?

~ -

r=
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63. Law of the Lever. If two weights are balanced at the
ends of any (uniform) bar, as shown in the figure, we have an
o F d example of a lever. The point of

‘ &l support, F, is called the fulcrum.

If we let W and w be the values
(in pounds or ounces or any
other convenient unit) of the two
weights, while D and d stand for
the distances respectively of W and w from F, then, when-
ever the balance is perfect, we have the formula

Fia. 19.

Sometimes a single weight W is balanced by a force, p,
usually called a power. This may happen in several ways, as
indicated by the following figures. In all such cases, if we

—— o v
A J Fﬁ—d—- 0
m P P (@) Q

=D
ke

A

s

)
W
Fira. 20.
let W represent the weight, p the power, D the distance from

W to the fulcrum, there exists the following formula when-
ever the balance is perfect :

> | ¥
Cla,
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This is called the general law of the lever. By clearing the

equation of fractions, it may be written in the form
WD=pd.

Translated into words, this last relation means that the
wetght times the weight arm equals the power times the power
arm. Itisin this form that the law is usually remembered by
engineers.

EXERCISES ON THE LEVER

1. If the fulerum of a 5-foot crowbar is placed 1 foot from
the end, what weight can be lifted by a man weighing 180
pounds?

[Hint. Here we have Fig. 19 with W =2, w (or p) =180 pounds,
D =1 foot, d =4 feet.]

2. .The figure represents a simple F S
form of pump. If the pump handle , i LA
AF is 16 inches long, while the e 2t
piston-arm FC is 3 inches long, what ]
will be the upward pull at C when .3:9
there is a 9-pound downward push Fia. 21
at A?

8. A certain lever, after being balanced, has r pounds
added to the weight W. Determine (in terms of W, p, D, d,
and r) how much the power, p, must be increased to keep the
balance perfect.

64. Gear Wheel Law. Whenever a gear wheel having T
teeth revolves at the rate of N revolutions per minute and
turns another similar wheel having ¢
teeth at the rate of n revolutions per
minute, there exists at all times dur-
ing the motion the formula
T _n

Fia, 22, ? ﬁ
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This is the gear wheel law. Clearing this equation of frac-

tions, it becomes
TN=tn.

Translated into words, this last relation means that the
number of teeth in one wheel multiplied by its rate of turning s
equal to the number of teeth in the other wheel multiplied by its
rate of turning.

EXERCISES ON GEAR WHEELS

1. If in Fig. 22 the small wheel has 30 teeth and is making
96 revolutions per minute, how many teeth must the large
wheel have in order to revolve 16 times per minute ?

2. In order that the large wheel revolve three fourths as

———rtast as the small one, how must the wheels be made ?

3. If the large wheel in § 64 be made larger by the addi-
tion of r teeth to its rim, determine the amount by which the
speed of the smaller wheel will be thereby increased.

[Hint. Let z represent the unknown amount and find a formula
for z in terms of T, t, N, n, and r.]

66. Other Useful Formulas. In addition to the formulas
already mentioned, the following from plane and solid
geometry and from elementary- physics are
often used.
a a 1. The area A of an equilateral triangle
of sidea (Fig. 23) is
V3
Fia. 23. 4 =_4_3 @,
where V3 =1.732 approximately.
2. The area A of a regular hexagon of
side a (Fig. 24) is
3V

A=—"a%
2 Fia. 24.
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3. The area A of any triangle in

terms of its three sides a, b, and ¢ < b
(Fig. 25) is A
= —_— — -— a
A=Vs(s—a)(s—b)(s—c), Fro 25,

where s=3(a+b+c).

. 4. The area A of the sector of a circle when
the intercepted arc is a and the radius is r
(Fig. 26), is _

a
Fie. 26. A=}ar.
5. The length of the diagonal d of a ¢ d
rectangular block whose dimensions b
are a, b, and ¢ (Fig. 27) is Fro. 27,

d=VaTrTe.

v |» 6. Thevolume V of a circular cylinder of altitude
h and radius of base r (Fig. 28) is

o V = Trrzh.
Fia. 28.

7. The volume V of a circular
cone of altitude h and radius of base r (see
Fig. 29) is
) =% arh. Fia. 29.

8. The volume V of a pyramid
of altitude h and base B (Fig. 30) is

=1 Bh.

9. The volume V of a spheri-
cal segment (or slice of a sphere
between two parallel cutting planes), where [ _---——---..)
h is the altitude, and a and b the radii of the ;
two bases (Fig. 31) is

v="—2"[(a=+b=)+§]-

Fia. 30.
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10. The surface S of the zone (or portion of the surface of
a sphere lying between two parallel cutting planes), where
h is the distance between the cutting planes and r the radius
of the sphere (Fig. 31), is
S=2 wrh.

11. The length of belt ! required to go around two wheels
whose diameters are D and d and whose centers are at the
distance a apart is

(a) In case the belt does not cross itself,

= 2\/@4—#9—:—‘1-

(b) In case the belt crosses itself once,

=3 /(D+d) e +_u,D+d.

12. The force F, measured in pounds, with which a body
weighing W pounds pulls outward (centrifugal force) when
traveling with a velocity of » feet per

w
F ) second in a circle of radius r (Fig. 33)
< v is determined by the formula
FW

Fia. 33. - 3271

13. The pressure P exerted by a letter
press (Fig. 34) is determined by the
formula P= 2mrF

=22
where F is the value of the force applied at
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the wheel, r is the radius of the wheel, and % is the distance
from one thread of the screw to the next one.

14. The weight W which canberaised , .4
by means of a toothed wheel and screw A H AR =T
such as indicated in Fig. 35 is deter- .
mined by the formula

_ awiRP
W= dr ’

Fic. 35.

where P represents the pressure applied
at the handle and where R, r, d, and [ are the dimensions
indicated in the figure.

Other important formulas from elementary geometry and
from physics may be found in Chapter XVII.

EXERCISES

1. Find by Formula 3 of § 65 the area of the triangle whose
three sides are respectively 5 inches, 5 inches, and 8 inches
long.

2. Show that in the case of an equilateral triangle of side
a the expression for A in Formula 3, § 65, reduces, as it should,
to that for A in Formula 1, § 65.

8. Show that in case the two wheels in Fig. 32 have the
same diameter D, the formula for the length of belt re-

duces in case (a) to the simple form [=rD+42 a, and in case
() to =2V D*+a?+xD.

4. How much leather (surface measure) will it take for a
belt 6 inches wide to connect two pulleys whose diameters
are 5 feet and 1 foot, respectively, the distance between
centers being 10 feet ?

[Hint. V104 =10.2, approximately.]
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6. A pail of water weighing 5 pounds is swung round at
arm’s length at a speed of 10 feet per second. If the length
of the arm is 2 feet, find (a) the pull at the shoulder when
the pail is at the uppermost point of its course, (b)) when at
the lowest point of its course. Also, find the least velocity
which the pail can have without the water dropping out at
the top point of the course.

6. What pressure is exerted by a letter press in case the
force applied at the wheel is 10 pounds, the diameter of
the wheel is 14 feet, and the threads of the screw are } inch
apart?

7. In the device shown in Fig. 35, show that if the distance
d between two adjacent threads be halved and the number
of teeth on the wheel be correspondingly doubled to fit the
new gear, other parts remaining the same, the weight W that
can be raised with a given pressure P will be doubled.

8. The volume V of the frustum of a cone or pyramid
made by a plane parallel to the base is given by the formula

V=§(B+b+\/§i>),

where B and b denote the areas of the lower and upper bases,
and h denotes the altitude.

Fia. 36.

Determine the volume of the frustum of a circular cone the
radii of whose bases are 4 inches and 3 inches, the altitude
being 5 inches.
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Show that in case the upper and lower bases are equilateral
triangles whose sides are a and b respectively, the formula
becomes
V3

12
[HiNT. See Formula 1, § 65.]
9. Show by means of Formula 3, p. 103, that if the

three sides of any triangle be extended to twice their original
length, the area will become quadrupled.

V=—= h(a®+ab+b?).

10. If, in the first of the two cases represented in Fig. 32,
the diameter of each wheel be increased by the same amount,
say a, show that the length of belt will thereby become in-
creased by the amount 7a.

11. If, in the second of the cases represented in Fig. 32,
the diameter of the large wheel be increased by any given
amount and at the same time the diameter of the small
wheel be diminished by the same amount, show that pre-
cisely the same length of belt as before will fit over them
tightly.

12. A body is moving along a circle with a velocity of
3 feet per second. Show that in order for the centrifugal
force (12, p. 104) which it is exerting to be doubled, the
velocity must be increased by about 1% feet per second.

By how much would the velocity have to be diminished
in order that the centrifugal force become halved ?

13. By means of Formulas 9 and 10 (§ 65) obtain the
formulas for the area and volume of a whole sphere. Com-
pare with Ex. 14, (e), (f), p. 6.



CHAPTER XII
GENERAL PROPERTIES OF QUADRATIC EQUATIONS

66. The Classification of Numbers. A real number is
one whose expression does not require the square root of a
negative quantity, while an imaginary number is one whose
expression does require such a square root. (See § 59, p. 93.)

Thus 1, 3, -7, }, 4, —%, V2, 1+V/3 are real numbers, while
V=3, V- }, 2+ V-3, are imaginary numbers.

In case a real number can be expressed in the particular
form 2 where p and ¢ are integers (positive or negative) it is

called a rational number. The number zero is also included
among the rational numbers. - (See § 42, p. 56.)

Thus 4, 2, —%,5, 73, —10, , are rational numbers.

In case a real number cannot be expressed in the particu-
lar form just mentioned, it is called an irrational number.

Thus V2, V3, \/g, V2, \’/g, V9, 14+v/6, are irrational num-

bers.

Imaginary numbers are either pure imaginaries, such as
v/ =3, or complex numbers (§ 59, p. 93), such as 1+Vv —
108
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These divisions and subdivisions may be summarized into
a table as below :
[ Rational
Redl i Irrational
Imadinar ( Pure Imaginaries
| ginary i Complex Numbers

Numbers of Algebra

Nore. The rational numbers are themselves subdivided into
three sub-classes: the single number zero, the tnicgers (positive or
negative), and the rational fractions. The latter are those rational
numbers which, like 3, cannot be expressed as integers.

All the numbers used in arithmetic are positive real numbers.
The negative real numbers together with the imaginary numbers
owe their existence to algebra.

* 67. Determin'ng the Character of the Roots of a Quad-
1atic. It is often desirable to determine the character of
the roots of a given quadratic, that is, whether the roots are
real or imaginary ; and if real, whether they are rational or
irrational, etc.

Thus the roots of 2 z2—7 z+1 =0 are (by § 56, p. 87),

Since 41 is positive, these roots are real numbers (§ 66).

Since 41 is not a perfect square, the roots are irrational (§ 66).

Since V41 is added to 7 in the one root and subtracted from 7 in
the other rooet, the roots are unequal.

Thus the character of the roots in this case is described by saying
that they are real, irrational and unequal.

7+=v4]
a—

There is, however, a much shorter method than the one
illustrated above for determining the character of the roots
of a given quadratic. Thus we know (§ 56) that the two
roots of any quadratic, namely, any equation of the form

ar:+bx+c¢=0,

—b+vVb2—4ac and =b—Vb’—4ac,

are
2a 2a
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An examination of the form of these expressions gives
at once the following rule.

RuLe. For any given gquadratic, ax®>+bx+4c=0, in which
the coefficients a, b, ¢ are real numbers, the two roots will be

(1) Real and unequal if b>*—4 ac s posttive.

(2) Real and equal if_b*—4ac=0. (Both roots then
reduce to — b/2 a.)

(3) Imaginary if b*—4 ac ts negative.

Moreover, if the coefficients a, b, c are rational numbers, the
two roots will be

(4) Rational, if b*—4 ac is a perfect square; irrational if
b*—4 ac 138 not a perfect square.

Because of the manner in which the character of the roots
thus comes to depend upon the value of 42—4 ac, this expres-
sion is called the discriminant of the given quadratic.

ExaMpLE 1. Determine the character of the rvots of

© 222—-32—9=0.

SovutioNn. Here a=2, b= -3, c=—9. Hence the value of
the discriminant, or b2 —4ac, is (—3)2—4(2)(—9) =9+72=81 =92,

Hence, by (1) and (4) of the rule, the roots are real, unequal,
and rational.

ExaMpLE 2. Determine the character of the roots of
3224+2z+1=0.

SorutioN. Herea=3,b=2,c=1. Hence b2—4ac=4—12= —-8.

Hence, by (3) of the rule, the two roots must be imaginary.

ExampLE 3. Determine the character of the roots of
4 22—20 z+25=0.

SoLuTiON. a=4,b= —20,c=25. Hence b2 —4ac =400 —-400 =0.

Therefore, by (2) of the rule, the roots are real and equal.

The common value which the two roots have may be found if
desired by actually solving the equation. It turns out to be 3.
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EXERCISES

Determine (without solving) the character of the roots of
each of the following equations.

1. 222—3z+1=0. 7. z’+:c=—l.

2. 222—4z24+1=0. 8. 412—4z+1=0.
3. 224+52+6=0. 9. 12*4+iz+3=
4. 312—2—10=0. 10. 72243 zx=0.

5. 3x2—x2+10=0. 11. 5r—2=412,

6. r*4z=1. 12. 5s*+7=8s.

*68. Character of Roots Considered Geometrically. We
have seen in § 57 that whenever a quadratic has its two roots
real and unequal, its graph will cut the z-axis in two-distinct
points. On the other hand, if the roots are imaginary, the
graph of the equation will not cut the z-axis at all (§ 60).
Suppose now that we have a quadratic
whose two roots are equal to each other,
for example
(1) 422—-122+49=0.

Here the discriminant is
(—12)2—4(4)(9)=144—144=0,
so that the roots must be equal (§ 67).

If we now proceed to draw the graph
of (1) in the usual way by placing
y=422—12 z+9, then forming a table
of z, y values, etc., it appears that the
graph corresponding to (1) just touches
the z-axis instead of cutting through it.

This, in fact, is what we should expect, Fra. 37.
since the equality of the roots virtually '
means that there is but one root, and this can be possible
only when the graph merely touches (is tangent to) the z-axis.
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In order to illustrate in one single diagram all the facts
mentioned thus far about the graph, it is instructive to take
such an equation as

(2) 22—2 z+4¢=0,

and let ¢ take different values, thus obtaining various quad-
ratics. For example, if we choose ¢=—2, the quadratic
equation becomes

2—2z2—-2=0;

and if we draw the graph of this, we find that it cuts through
the z-axis at two points, thus in-

- dicating that its solutions are real
and unequal.

Likewise, we find a similar result
when we let ¢=—1, and when
¢=0, though the various graphs are
themselves different.

But if we choose ¢=1 and pro-
ceed as before, the graph of the
corresponding quadratic no longer
cuts through the z-axis, but merely
touches it, thus indicating real
and equal roots.

Finally, for such values of ¢ as 2,
3, or 4, the quadratics (2) come
to have graphs which do not cut

the z-axis, thus indicating that they have imaginary roots.
The effect of changing ¢ is thus merely to slide one and
the same curve vertically up and down the coirdinate papc:.
The figure shows the positions of the curve corresponding
to c=—2, ¢=1, and ¢=4. The pupil is advised to draw
in for himself the positions of the curve forc=—1,¢=0, c=2,
and ¢=3.

Fia. 38.
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69. The Sum and Product of the Roots. We have seen
that every quadratic is an equation of the form

(1) ar?+bxr+c=0;

and we have also seen (§ 56) that the roots, or solutions, of
this equation are

Yy v
2a
and
S )
a

It is now to be observed that if we add these solutions
together the radical cancels and we obtain the simple result

—2b__b

n+2= o p

Again, if we multiply the two solutions together, we obtain
a final result which is very simple in form. Thus
_(=b)—(Vb*—4ac) b—(b*—4ac) 4ac_c

x = e————==—
1e 4 a? 4 a? 4a® a

These results may be summarized in the following rule.

RuLe. In the general quadratic equation ax®+bz+c=0,

(1) The sum of the two solutions is —b/a.
(2) The product of the two solutions is c/a.

ExampLE. Find the sum and the product of the solutions
of the equation 3 22—2 2+6=0.

SoruTioN. Here a=3, b= —2, c=6.

Hence the sum of the solutions is ——_3—2, or 2, and the product

of the solutions is § =2.
1
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EXERCISES

State {by inspection) the sum and the product of the solu-
tions of each of the following equations. Check your answer
in Exs. 1, 2, 3. 4 by actually solving the equations and de-
termining the sum and thke product of the solutions.

1. 2r45x—7=0. 5. 62247 x=42.

2. 3x—7x+2=0. 6. 24izt+i=

3. 512—2r=16. 7. 222+V31+V5=0.
4 3x=200—1r% 8. r*+pr=gq.

9. Show that in the quadratic z2+mz+ n = 0 the sum of the

roots is —m and the product of the roots is n. This general
result is important and may be stated in words as follows :
If in a quadratic the coefficient of x2 is 1, the sum of the solu-
tions unll be the coeffictent of x with its sign changed, while the
product of the solutions will be the remaining term. Explain
and illustrate by means of the equation z>—10 z4+12=0.

10. Apply the result stated in Ex. 9 to determine the sum
and the product of the solutions of the following equations.

(a) x2—52+7=0. (e) 22— (a+b)z+ab=0.
(b) x2—4z=10. (f) 222432z—4=0.

(¢) x*—%z=2. [HinT. First divide through
(d) 22— V2z+V3=0. . by 2]

70. Formation of Quadratics Hav'ng Given Solutions.

ExaMpLE 1. Form the quadratic whose solutions are
1 and —

SoruTtioN. If z=1, thenz—1=0;if r= —Q_;, thenz 4} =

Hence the equation (z—1)(z+3)=0, or 22—4 z—4 =0, will be
satisfied when either =1 or z = — § (§ 52).

The desired quadratic is therefore

—3z—%=0,0or2z2—2—-1=0. Ans.
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Similarly, if the given solutions are any numbers, as a
and b, the equation having these as solutions is obtained by
subtracting a from z and b from z, then multiplying the two
factors thus obtained together and placing the result equal
to 0; that is, the desired equation is (x—a)(z—b) =0. .

EXERCISES

Form the quadratics whose roots are

1. 2,3. 8. 1V5, —}.

2. —2, —3. 9. 3m, —5m.

3. 4,1 10. 2a—b, 2 a+b.
4. 12, —5. 11. 3+V?2,3-V2.
5. 4 —1 12. 2—V’5, 24+ V5.
6. V2, V3. 13. 2=V3,

[HiNT. Write answer in the 14. —1(3=V6).
form x’—(\/§+\/3)a:+\/6_=0.] 16. %(_1*\/5)

7. V8, —V2. 16. m(2=2V5).

17. Show that if in any quadratic, as ax®+bxr+c=0, one
root is double the other, then the relation 2 b2=9 ac must
exist among the coefficients, a, b, and c.

[HinT. Let 7 be oneroot. Then, by what the problem assumes,

the other root is 2r. Now form the quadratic having r and 2 r as
roots, and examine its coefficients.]

18. Show that if in any quadratic, as ax?+bx+¢=0, one
root is three times the other, then we must have 4 ac=b*—9 a2

19. Find the relation which must hold between a, b, and ¢
in order that the roots of the quadratic ax?*+bx+c=0 may
be to each other in the ratio 2: 3.

[Hint. Use the Rule of § 69.]



CHAPTER XIII
IMAGINARY NUMBERS

71. Preliminary Statement. Just as V2 means the num-
ber whose squareis2; that is, (V2)?=2, so V' —2 means the
number whose square is —2; that is, (V —2)2=—2. The
latter case differs essentially, however, from the former, be-
cause we cannot conceive of any number, positive or nega-
tive, whose square gives a negative result, like —2. In fact,
this would seem to contradict the law of signs [§ 2 (d)],
according to which the square of either a positive or negative
quantity is always positive. The explanation is that vV —2
belongs to an altogether new class of numbers, called im-
aginary numbers, so that we cannot expect to think of them
in the way just mentioned ; namely, as though they were real
numbers. Imaginary numbers first came to our notice in
§ 58, where we found that the very simple quadratic 2= —1
has the two imaginary roots x=v' —1 and x=— v —1.

Imaginary numbers have certain definite properties.
They may be added, subtracted, multiplied, divided, etc.,
in ways which will be explained in the present chapter.

72. The Imaginary Unit. Every pure imaginary number
(§ 66) may be expressed as the product of a certain real num-
ber multiplied by vV —1. For this reason, vV —1 is called

116 -
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the imaginary unit, and for convenience is represented by
the letter 1.

Thus vV —4=v4(=1)=2V—-1=2i.
V—27=V27(-1)=V27 V-1=3V3i.
V=8=VvE(-1)=Vv8 vV -1=2V2i.
V_Z=Vz(—1)=zV —1=xzi.

A pure imaginary number when thus written as a real

number multiplied by 7 is said to be expressed in terms of ©.

EXERCISES

Write each of the following.expressions in terms of 7.

1. V=16. 5. V—dz.
2. V=25 6. V=100 m?.

3. V=18 1. V=49 a%"

4. V224 8. V=50

9. V-1
Sovution oF Ex.9. VI(—1)=VIV_1=}i. Ans
10. V=3, w9 v=H
11. V=4 13. \/:m‘

14, V2T,

SovuTiOoN oF Ex. 14. @ \/97 vl =3—2\/—-§ t. Ans.

16. V-3 16. vV —45.
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73. Addition and Subtraction of Pure Imaginary Num-
bers.

ExampLe. Add V=9 and V' —25 and express the result
in terms of 3.

SovruTION.

V94V =25=VOV _14V25V-1=3i+5i=8i. Ans.

EXERCISES

Simplify each of the following expressions, obtaining the
result in terms of 7.

1. V=44V =36. 2. vV—494+vV—16.
V=814V =644V —100.

V=8+V=27. (2V2+3V3)i. Ans.
VvV=20-v=18. 6. V—-14+vV—-12—vV —45.
Vg4V =a24+V =92

V' —16 a2+VvV —100 a>*—V —81 q2.

vV =25 224V — 225 25+ V — 625 74,

10. V=32 mi+V =20 m*—vV —27 m*.

11. V=24 %242V =6 htk2+-3V — 54 R2k2.,

12. V—8+aV—-2—-vV—=-08—-3V -3 a2

© O No W

74. Simplification of Complex Numbers;
ExampLE. Simplify 24V —9.
SoruTiON. 24V —9=2+431i. Ans.

In this exercise we have a real number, 2, to which is added the
pure imaginary number, V' —9, thus giving a complex number (§ 59).

EXERCISES
Simplify each of the following complex numbers.
1. 5+V =8l 4 }—V-12
2. 6—2VvV -27. 6. 1—-V —£n
3 +VvV-§ 6. —3+V —1§.
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7. Show that the quadratic equatxon 12—4 2+13=0 has
as its solutions r=2+3 1.
[HinT. Solve as in § 56.]

8. Find the solutions of the equation 4(2 z—5) =x2

76. Multiplication of Imaginary Numbers.

ExampLE 1. Multiply vV —3 by vV —4.

SoruTion. vV —3: V—4=V3i. V&i=V12 2=VI2(V 1)
=—V12=-2V3. Ans.

Note that the process of multiplication consists in first

expressing each number in terms of the unit 4, then making
use of the fact that (since 7=V —1) we may write —1 for 2

ExampLE 2. Multiply 2+Vv—3 by 4—vV —3.
SoLutioN. (24+V =3)4-V =3)=(2+V3i)(4—-V3i).
24+V34
4—-V34
8+4V3i
—2V3i—(V3) 42
842V3i-3(—1)=1142V3i. Ans.

EXERCISES

Find each of the following indicated products.

1. V—4.V 25 9. 2+ V-1)2-V-=1).
2. vV—2.V-18. 10. (5—V=6)(5+V—6).
3. V=10V =5. 11. 2+V=3)3+V=3).
4 V=3.V-15. 12. (2+V =3)8+V=2).
5. 2V —2 -3V =2 13. (1-vV=2).

6. 5V =3 -3V =2. 14. (z+V—y)z—V —y).
7. V—9a -V -254a 16. aV —b - ¢V —b.

8. 1+vV=2)1-v=2). 16. aV—b-cV—d.
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76. Division of Imaginary Numbers.
ExampLE 1. Find the value of vV —27+V —3.

V=27 _V2Ti_V2T_ g_

V= ——\/ﬁz v3 =v09=3. Ans.
ExaMpLE 2. Find the value of 6+ V —3.

6 __ 6 __6i _ 6i _6V3i__ o3,
V=3 v3i V34Er -v3 -3 Ane.

SoLvuTION.

SovLvuTION.

ExampLE 3. Find the value of 3+ (1+V 2).
3 3 _ 3(1—Vv21)
1+v=2 T14v2i A+VvV2i)(1-Vv2i)

_3(1-v2i)_31-v2i)_
X 12 ) =1-vV24i. Ans.

Note that in Example 2 we rationalized the denominator

SoLvuTION.

of

\/_ by multiplying both numerator and denominator
by the value V3. Likewise, in Example 3 we rationalized

the denominator of by multiplying both numerator

\/— 214
and denominator by 1—+/274. 1In general, any fraction hav-
ing a denominator of the form a++v —b may be rationalized
by multiplying both numerator and denominator by a—+v —b,
which is called the conjugate imaginary of a++v —b

EXERCISES

" Find the following indicated quotients, rationalizing the
denominator in each.

1. V-16+V —4. 4. 2+-V 6.
2. V—=20+-V—5. 6. V3+v =2,

3. \/—45+\/‘—§ 6. V—-3=V2.



XII1, § 77 IMAGINARY NUMBERS 121

7. V63+V=7. 12. _2_..
8. 2V —T5+vV—3, - 1-v -3
9. 6V =242V —6. 13. 3+2v -5,
10. V=B 2+V 57, 3-2V-5
11, — 2 . 14 4-2V-3,
1+v =3 142V =3

*7T7. Geometric Representation of Complex Numbers. All real
numbers (positive or negative) can be represented as points on a line,
as explained in § 1. Similarly, all complex numbers may be repre-
sented as points in a plane, and it is convenient for many purposes
to regard them in this way. Thus,
the complex number 544+ may be
looked upon as lying at the point
(5,4), that is at the point whose
abscissa is 5 and whose ordinate is 4.

(See § 28.) Likewise, the complex

number —2+43 4 lies at (—2, 3); the

number 3 —2 ¢ lies at (3, —2); and, in

general, the number z+yi, where z

and y are any (real) numbers, lies at

the point (z, y). Whenever a plane

is used in this way to represent com-

plex numbers, it is called a complex

plane. The z-axis is called the axis F1e. 39.

of reals and the y-axis is called the axis of pure imaginaries (because
the pure imaginary part of each complex number is to be measured
parallel to it). The straight line joining any point z+iy to the
origin is called the radius vector of that point, or number.

Observe that from this point of view all real numbers become
represented by the points on the axis of reals, wkile all pure imaginary
numbers become represented by the points on the axis of pure
imaginaries, the other points of the plane being then taken up by
what are properly the complex numbers.



CHAPTER XIV
SIMULTANEOUS QUADRATIC EQUATIONS

I. ONE EQuaTION LINEAR AND THE OTHER QUADRATIC

78. Graphical Solution. In Chapter VI we have seen how
we may determine graphically the solution of two linear
equations each of which contains the two unknown letters
z,y. The method consists in first drawing the graph of each
equation, then observing the z and the y of the point where
the two graphs intersect (cut each other). The particular
pair of values (z, y) thus obtained constitutes the solution.

We often meet with simultaneous equations which are not
both linear, as for example the two equations

(1) r—y=1,
2) 2242 =25.

Here the first equation is linear (§ 26) but the second is not.
In order to solve them, that is in order to find that pair (or
pairs) of values of z and y which satisfy both equations, we
may proceed graphically as follows.

The graph of (1) is found (as in § 29) to be the stra,lght
line shown in Fig. 40.

To draw the graph of (2), we first solve this equation for y.
Thus y?=25—22 Therefore

3) y==V25—22
122
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We now work out a table of pairs values of z and y that will
satisfy (3), that is we give = various values in (3) and solve
for the corresponding y value. (Compare § 60.) The result
is shown below. Observe that to the value x=0 there cor-

When z = 0 +1 +2 | 43 | +4 | 45
then y= | =v25| =v24| =v2I| =VI6| =v9 | =V0
= | =5 48 | =45 | =4 +3 0

respond the two values y= =5; similarly to z=1 correspond
the two values y= =4.8 (approximately), etc.

Moreover, if we assign to z the negative value, z=—1,
we find in the same way that corresponding to it y has the
two values y=+4.8. Likewise, for z=—2 we find y= +4.5,
etc., the values of y for any negative value of x being the
same each time as for the corresponding positive value of x.

Fia. 40.

Plotting all the points (z, y) thus obtained and drawing
the smooth curve through them, the graph is as shown in
Fig. 40. This curve is a circle, as appears more and more
clearly as we plot more and more points (z, y¥) belonging to
the equation (3).
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Note. The form of (3) shows that there can be no points in the
graph having z values greater than 5, for as soon as z exceeds 5 the
expression 25 —z? becomes negative and hence V25 —z2 becomes
imaginary, and there is no point that we can plot corresponding to
such a result. Similarly, it appears from (3) that z cannot take
values less than —5.

Thus the graph can contain no points lying outside the circle
already drawn.

Returning now to the problem of solving (1) and (2), we
know (§ 31) that wherever the one graph cuts the other we
shall have a point whose « and y form a solution of (1) and
(2), that is we shall have a pair of values (z, y) that will
satisfy both equations at once. From the figure it appears
that there are in the present case fwo such points, namely
(x=4, y=3) and (x=-3, y=—4). Equations (1) and (2)
therefore have the two solutions (x=4, y=3) and (z= -3,
y=—4). Ans.

CrECK. For the solution (z=4, y=3) we have z —y=4-3 =1,
and z2+y2 =16 4+9 =25, as required.

For the solution (r= -3, y=—4) wehavezr —y=-3—(—4) =1,
and 22+3y2=9+16 =25, as required.

The following are other examples of the graphical study of
non-linear simultaneous equations.

ExampLE 1. Solve the system
@ 2z—9y+10=0,
(5) 4 2249 32=100.

SoruTioN. The straight line representing the graph of (4) is
drawn readily.
To obtain the graph of (5), we have 9 2=100—4 z2. Hence
Y2 =3(100 —4 2?) = 4(25 —2?),
and therefore
6) y==3V25—-22,
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Corresponding to (6), we find the following table:

Whenz=| 0 +1 +2 +3 +4 | +5 [greaterthan

then y= ;i:!\/2_5- 4+4V24 | £3V2I | £3V16 | £3V9 | £3V0 | imaginary
= | :4(5) +#(4.8) | £3(4.5) | +3(4) +%(3) | +£0 imaginary
= | +3.3 +3.2 +3.0 +2.6 +2 0 imaginary

For any negative value of z, the y-values are the same as for the
corresponding positive valueof z. (See thesolution of (1) and (2).)

The graph thus obtained for (6), or (5), is an oval shaped curve.
It belongs to a general class of curves called ellzpses.

Fia. 41,

The two graphs are seen to intersect at the points
(x=4,y=2)and (z= -5, y=0).
Therefore the desired solutions of (4) and (5) are (zx =4, y=2)
and (z = -5, y=Q). Ans.
. ExampLE 2. Solve the system
) 2z—y=-2,
(8) zy=4.
SoruTioN. The graph of (7) is the straight line shown in Fig. 42.
To obtain the graph of (8), we have
-4
¢)) y=>
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from which we ob‘ain the following table :

4 |13|211]4%1%1%1%

When:c=87!6 !
|1]4|2]4]8]12]16]20

then y=| %

This table concerns only positive values of z, but it appears
from (9) that for any negative value of x the appropriate y value
is the negative of that for the corresponding positive value of z.

The graph thus obtained for (9), or (8), consists of two open
curves, each indefinitely long, situated as in Fig. 42. These taken
together (that is, regarded as one curve) form what is known as a
hyperbola (pronounced hy-per'bo-la). The part (branch) lying to
the right of the y-axis corresponds to the above table, while the
other branch corresponds to the negative = values.

Fic. 42.

The two graphs are seen to intersect in the points (z=1, y=4)
and (z= -2, y=—2).

Therefore the desired solutions of (7) and (8) are (x=1, y=4)
and (z= -2, y=—2). Ans.

Note. Ellipses and hyperbolas are extensively considered in
the branch of mathematics called analytic geometry — a study which
may be pursued after a course in plane geometry and a course in
algebra equivalent to that in this book. It is usually taught during
the first year of college mathematics.
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ExamrLE 3. Consider graphically the system

(10) z+y=10,
11) 24y? =25,

SorvurioN. The graph of (10) is found in the usual manner, and
is represented by the straight line in Fig. 43. The graph of (11)
has already been worked out (see discussion of (2)), being a circle
of radius 5 with center at the origin. The peculiarity to be es-
pecially observed here is that these two graphs do not intersect.
This means (as it naturally must) that there are no real solutions
to the system (10) and (11); in other words, the only possible solu-~
tions are imaginary.

Fia. 43.

Likewise, whenever any two graphs fail to intersect, we may be
assured at once that the only solutions their equations can have
are imaginary. The system (10) and (11) and other such systems
will be considered further in the next article.

EXERCISES
Draw the graphs for the following systems and use your
result to determine the solutions whenever they are real.
{x+y=6, 2 {x+3 y=—25,
22+y2=20. " 142249 y2=100.
[HinT. See Example 1, § 738.]
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3 {:c—2 y=-—1, 6 {:cz—y’=16,
T | 22+4 y2=25. " ly=2=z.
(2 24y=4, 7. (2t+y=2,
\xy=——16. iy=x’.
[HinT. See Example 2, § 78.]
5 {x’——y’=16, 8 {2:c+y=1,
" |52z—3y=0. " \y=422422+1.

79. Solution by Elimination. Let us consider again the
system (1) and (2) of § 78.

(1) z—y=1,
2) 22 4y2=25.

Instead of solving this system graphically, we may solve
it by elimination, that is by the process employed with two
linear equations in § 33.

Thus we have from (1)

3) y=z—1.

Substituting this value of y in (2), thus eliminating y from

(2), we obtain

224 (2—1)2=25, or 2?4-12—22z4+1=25,

or 212—22—-24=0,
or, dividing through by 2,
4) 2?—g—12=0.

Solving (4) by formula (§ 56), gives as the two roots
= (DY) —4M)(-12) _14+V1+48_147_,

2 2 2 y
and
_—=(=D=V(=1)*-4Q)(=12) _1-V1448_1-7_
7= 2 s g%

When z has the first of these values, namely 4, we see
from (3) that y must have the value y=4—1, or 3.
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Similarly, when z takes on its other value, namely —3, we
see that y has the value y=—3—1, or —4.

The solutions of the system (1) and (2) are, therefore,
(x=4,y=3) and (z=—-3, y=—4). Ans.

Observe that these results agree with those obtained
graphically for (1) and (2) in § 78.

Further applications of this method are made in the
examples that follow. ‘

ExampLE 1. Solve the system

5) 2z+y=4,

(6) 24y2=12,
SovLuTion. From (5), '

7 y=4-2z.

Substituting this expression for y in (6), we find

224 (16 —16 z +4 22) =12,
or

(8) 522—16z+4=0.
The two roots of (8), as determined by formula (§ 56), are
z= —(—16) =V (—-16)2—4(5)(4)_16=Vv256—-80_16=+=V176

2(5) 10 10
_16=4VIl_8=2VIl,
10 5

The first of these values, namely 2= (8+4+2V'11)/5, when .sub-
stituted in (7), gives as its corresponding value of ¥,
_ 164+4V11_4-4V11
y=4- .
5 5
The second value, namely z= (8 —2V'11)/5, when substituted
in (7), gives as its corresponding value of y,
y=4 16—-4V11_4+4VI1l

5 5
Hence the desired solutions are
x_8+2V 11 _8-2v1l
==, ===,
5 and 5
_4-4V11 _44+4V11
y——5—, y——-g—'
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To obtain the approximate values of the numbers thus ol tained
we have V11 =3.31662 (tables), and hence the above solutions re-
duce to the forms

{ z =2.9266, d { z=0.2734,
ly=—1.8533, y =3.4533.

These are the solutions of the system (5), (6), correct to four places
of decimals, which is sufficient for ordinary work.

NoTe. It may be remarked that, while the graphical method of
solution described in § 78 is very instructive in showing how many
solutions a given system will have, and what their geometric
significance is, it does not usually afford a ready means of deter-
mining the exract values of the solutions. This is illustrated in the
example just solved, where, if the graphs of (5) and (6) be drawn,
they will intersect at points whose r and y contain the surd V11
(as the above solution shows), and it would be difficult to measure
off any such values accurately on the scale of the diagram. In
fact, it would be practically impossible to determine graphically
the solutions of (5) and (6) correct to three or even two places of
decimals, yet this degree of approximation was easily obtained above
by the method of elimination. For such reasons, it is preferable,
whenever one is concerned only with finding the values of solutions,
to proceed from the beginning by the method of elimination.

ExaMPLE 2. Solve the system

9 z+y=10,
(10) r24y?=25.
SoruTioN. From (9),
(11) X y=10—z.

Substituting this expression in (10),
2?24 (100 —20 = +z?) =25,

or
(12) 222—-20x475=0.
Solving (12) by formula, we find its solutions to be
I =20+\1/0—200 and z=20— \/10—200.

Since these z-values contain the square root of the negative
quantity —200, they are imaginary (§ 58). The y-values are also
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imaginary, as appears by substituting the z-values just found into
(9), which gives the results

y=w and y=80+V =200

10 10
The desired solutions of the systems (9), (10) are therefore
z=20+V —200 z=20—V —200
10 ’ 10 !
and
_80—-v —200 _80++Vv —200
T LT

This result should now be contrasted with what we saw in
Example 3 of § 78 regarding this same system (9) and (10). There
we found graphically that the solutions must be imaginary be-
cause the graphs failed to intersect, but we could not find the actual
imaginary numbers which form the solutions. This we have now
been able to do, however, by the method of elimination. The
method of elimination enables one to determine imaginary as well
as real solutions in all similar cases.

EXERCISES

Solve each of the following systems by the method of elimi-
nation, and, in case surds are present, find each solution
correct to two places of decimals by use of the tables.

. {x+y=—1, N {z2—2y2=8,
x2+y =13. z—2 y=3.
2—2yi= -8,
2 { z-2y="1, " { z—2y=-3.
o+4y?=25. 8 3 x2—2xy—>5 y2=>5,
T—2y=2, ) { 3z—5y=1.
% loayr=25. [z 208t
9. {3y 5z 15
" {“tyf‘l_’ﬁ |22—5y=—4
e (a=y_z+y_5
5 !2z+y=2, 10. {_x+y r—y 6
"l zy=-6. 224+5y=5
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II. NEiTHER EQUATION LINEAR

*80. Two Quadratic Equations. In each of the systems
considered in §§ 78, 79 one of the two given equations was
linear. However, the same methods of solving may often
be employed in case neither equation is linear. In such cases
Sfour solutions may be present instead of two.

ExampLE 1. Solve the system
1) 9 224-16 y2=160,
@) z2—y?=15.
SoruTion. Here only 22 and 32 appear and we begin by finding

their values. Thus, multiplying (2) through by 16 and adding the
result to (1), we eliminate y* and find that 25 z2 =400, or

3) 72 =16,
Substituting this value of z in (2), we find
4) =1
From (3) and (4) we now obtain
®) z=+4 and y==1.

Forming all the pairs of values
z, y that can come from (5), we
obtain as our desired solutions
(z=4,y=1); (z=—4,y=1);
(x=4,y=—1); and
(z=—4,y=-1). Ans.
Cueck. Each of these pairs of
values of z and y is immediately
seen to satisfy both (1) and (2).
Let the pupil thus check each pair.
When considered graphically,
Fia. 44. equation (1) gives rise to an
ellipse (compare § 78, Ex. 1), while
(2) gives a hyperbola situated as shown in the diagram. These
two curves intersect in four points which correspond to the four
solutions just obtained.
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ExampLE 2. Solve the system
) 2+ =25,
€)) zy=—12.

SoruTioN. Here we cannot proceed as in Example 1 because
we cannot find readily the values of 22 and y2. But if we multiply
(8) by 2 and add the result to (7), we obtain

9 2 +2zy+yt=1.
Taking the square root of both members of (9) gives
(10) z4+y==1.

Similarly, multiplying (8)
by 2 and subtracting the result

from (7),

22 -2 zy+y* =49,
and hence
(11) z—y==T7.

Taking aceount of the two
choices of sign in (10) and
(11), we see that they give rise
to the four simple (linear)
systems

(@) z+y=1, z—y=7;

) z+y=-1,z—y=7;

() z+y=1, z—-y=-7;

@d) z+y=-lLz—y=-T7;

Thus we have replaced the original system (7) and (8) by the
four simple systems (a), (b), (c), and (d), each of which may be
immediately solved by elimination, as in §§ 33, 34. Since the solu-
tions of (a), (b), (¢), (d) are respectively (zx=4, y=—3), (z=3,
y=—4), (x=—38,y=4),and (z = —4, y=3), we conclude that these
are the desired solutions of (7) and (8). Ans.

The graphical significance of these solutions is shown in Fig. 45,
where the circle 22432=25 is eut by the hyperbola zy= —12 in
four points that correspond to the four solutions just found.

CHECK. That these four solutions each satisfy (7) and (8)
appears at once by trial.

Fia. 45.
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While no general rule can be stated for solving two equations
neither of which is linear, the following observation may be
made. Unless the equations can be solved readily for 22
and y? (as in Example 1), the system should first be carefully
examined with a view to making such combinations of the
given equations as will yield one or more new systems each
of which can be solved (as in Example 2) by methods already
familiar. All solutions obtained in this way should be
checked, since false combinations of the z- and y-values are
frequently made by beginners when the work becomes ‘at all
complicated. .

EXERCISES

Solve cach of the following systems, and draw a diagram
for each of the first three to show the geometric meaning of
your solutions.

[ 2?4y =25, 3 {x’+y’=20
-yt =1. ' zy=8.
o | 42rH937=100, . {x=+xy=36,
| 2x—ypr=2s. -\ yt4zy=15.

[HinT ror Ex. 4. First add, then subtract the two equations,
thus showing that the given system is equivalent to two others,

namely
=91 + =
{zij?i = =9, and {zf—;: = -9,
Now solve each of these systems as in § 80.]
{ 4 2249 4y2=85, { u?+uv =45,
b. 8. 2 _
zy=3. ut—uv=>5.
{ o +zy+y*="79, 9 { s —#=15,
?2—zy+y?=37. ) s=41£.
[ zy—6=0, o { z—2y=9,
. 2+ =zy+7. 10 1 y+2ay=—20.



CARDAN
(Girolamo Cardan, 1501-1576)

An equation of the third degree (cubic equation) has three roots and
these can be found only by methods which are more powerful than those
employed in the study of quadratics. Cardan was the first to obtain and
publish a method for sclving such equations. THis methods are Bl sofficens
to solve any pair of simultanecous quadratics, but are Yoo aAVANCRA ko'

&ven in this bock.
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*81. Systems Having Special Forms. The systems of equations
considered in §§ 79, 80 illustrate the usual and more simple types
such as one commonly meets in practice. It is possible, however,
to solve more complicated systems provided they are of certain
prescribed forms. We shall here consider only two such type forms.

I. When one (or both) of the given equations is of the form

az? +bzxy +cy*=0,
where the coeflictents a, b, ¢ are such that the expression ax?®+bxy +cy?
can be factored into two linear factors.

ExampLE. Solve the system
(1) 242z —y=7,

2) - 22—zy—29y2=0.

SorutioN. Here we see that (2) is of the form mentioned above,
since 22 —zy —2 y? can be factored (as in §12 (¢)) into (z —2 y)(z +y).
(2) may thus be written in the form
3) (x—2y)(z+y) =0.

It follows (§ 52) that either

z—2y=0. or z+4+y=0.
Hence the system (1), (2) may be replaced by the two following
systems :
{ 242 —-y=7,
z—-2y=0,
and
{ 242z2—y="7,
z+y=0.

Each of these two systems may now be solved as in § 80, and we.

thus find that the solutions of the first system are
(z=2, y=1)and (z=—F,y=—7)
while the solutions of the second system are

{ z=4(—-3+V37),
y=%(3-Va7),
and
{ z=3(—-3-V37),
y=%(3+V37).
The desired solutions of (1) and (2) consist, therefore, of these four
solutions just obtained. Ans.
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II. When both the given equations are of the form
az?+bzy+cyt=d,
where a, b, ¢, and d have any given values (0 included).
ExampLE. Solve the system

@) g —zy+yr=3,
{5) 2?42 zy=5.
SorLuTioN. Let v stand for the ratio z/y; that is, let us set
Loy,
Yy
Then
«6) z=vy.
Substituting in (4),
«7) vy vyt 4t =3,
Substituting in (5),
(8) vyt +2 vyt =5,
Solving (7) for 32,
3
= .
® s —-v+41
Solving (8) for 2,
5
[ 2 = —,
(10) ¥ 420
Equating the values of y2 given by (9) and (10), ~
5 3

420 -y +1
Clearing of fractions,
(11) 22—11v4+5=0.
Solving (11) by formula (§ 56),
p=11=V121-40_11+v81 _11+9
4 4 4
Therefore v=35, or y=4. Substituting 5 for » in (9), or (10),

v=1
Hence T
1 1
=+—, or ——.
RV V7

Substituting % for vin (9) or (10), y*=4. Hence y = +2, or -2,
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The only values that y can have are, therefore, 1/V7, —1/V7,
2, and —2. )

Since z=vy (see (6)), the value of z to go with y=1/V7 is
z=5(1/VT7)=5/V7. Similarly, when y=-—1/vV7 we have
z=5(—1/V7)=-5/V7. Likewise, when y=2 (in which case
v=1%, as shown on p. 136) then x =% - 2=1, and when y = —2, then
z=4(-2)=-1. .

Therefore the only solutions which the system (4), (5) can have
are (z=5/V7, y=1/V7);@==5/V7,y=—-1/V7); z=1,y=2);
(x=—1, y= —2); and it is easily seen by checking that each of these
is a solution. Ans.

82. Conclusion. Every system of equations considered
in this chapter has been such that we could solve it by finally
solving one or more simple quadratic equations. We have
examined only special types, however, and the student should
not conclude that all pairs of simultaneous quadratics can be
solved so simply.

MISCELLANEOUS EXERCISES

Solve the following simultaneous quadratics. The star
(*) indicates that the exercise depends upon § 81.

1 { 22 4-y?=25, r4+y=2,
' z+y=1. 3. g+§=6.
T Yy
2 {31:’-—xy—5y =5, " {xy+2:c=5,
) 3z—5y=1. T | 2zy—y=3.

[Hint 10 Ex. 4. First eliminate zy between the two equa-
tions 80 as to obtain a linear equation between = and y.]

5. { 2242 z—y=5, 7. { 4 22442 =61,
222—3x4+2y=8. 2 2243 42=93.

6. {x‘—y‘=369, 8 { 2412 =100,
g2yt =0, (z+y)?=196.

[Hint To Ex. 6. Divide the first equation by the second.]
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[2'—zy=6 * {2x’+zy—y”=0
9. ’ 12. b
i rr—y?=8. 2224y=1.
10. {x’+y’+z+3 y=18, *13 { 222-3y—y*=8,
ry—y=12. Tl 6x2—5xy—6y2=0.
11. $’+$’£/+y = 19: *14 { zy+2 y2=8;
22 =144, T 242 xy=12.

*15 { 22—y —y?=20,
T |2?=3zy+2y2=8.

APPLIED PROBLEMS

In working the following problems, let  and y represent the two
unknown quantities, then form two simultaneous equations and solve
them. If surds occur, find their approximate values by the tables.

1. The sum of two numbers is 13 and the difference of
their squares is 91. Find the numbers.

2. A piece of wire 48 inches long is bent into the form
of a right triangle whose hypotenuse is 20 inches long. What .
are the lengths of the sides? (See Ex. 14 (d), p. 6.)

3. If it takes 26 rods of fence to inclose a rectangular garden
containing 1 of an acre, what are the length and breadth?

4. Figure 46 shows two circles just
touching (tangent to) each other, the
smaller one being outside the larger one.
If their combined area is 15§ square feet
and the distance CC’ between the two
Fia. 46. centers is 3 feet, find the radius of each

circle. (Take m=22.

5. Work Ex. 4 in case the circles touch
on the inside of the larger one, taking the
shaded area to be 110 square feet and
CC’ to be 5 feet.
Fia. 47.
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6. Do positive integers exist differing by 5 and such that
the difference of their squares is 45? If so, find them.

7. Answer the question in Ex. 6 in case the differ-
ence of the squares is taken to be 10, other conditions re-
maining the same.

8. The area of a certain triangle is 160 square feet, and
its altitude is twice as long as its base. Find, correct to
three decimal places, the base and the altitude. (Sez Ex.
14 (a), p. 6.)

9. The area of a rectangular lot is 2400 square feet, and
the diagonal across it measures 100 feet. Find, correct to
three decimal places, the length and breadth.

10. The mean proportional between two numbers is 2
and the sum of their squares is 10. What are the numbers?
(Ses Ex. 6, page 80.)

11. The dimensions of a rectangle are 5 feet by 2 feet.
Find the amounts (correct to two decimal places) by which
each dimension must be changed, and how, in order that
both the area and the perimeter shall be doubled.

12. Two men working together can complete a piece of
work in 6 days. Ifit would take one man 5 days longer
than the other to do the work alone, in how many days
can each do it alone? (Compare Ex. 9, p. 56.)

_ 13. The fore wheel of a carriage makes 28 revolutions
more than the rear wheel in going 560 yards, but if the
circumference of each wheel be increased by 2 feet, the
difference would be only 20 revolutions. What is the
circumference of each wheel ?

14. A sum of money on interest for one year at a certain
rate brought $7.50 interest. If the rate had been 19, less
and the principal $25 more, the interest would have been the
same. Find the principal and the rate.
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16. A man traveled 30 miles. If his rate had been 5
miles more per hour, he could have made the journey in 1
hour less time. Find his time and rate.

G 16. Figure 48 shows a circle within

K which a diameter AB has been drawn.
Al At a certain point P on AB the perpen-
A B dicular PG measures 4 inches, while at
the point @, which is 1 unit from P,

the perpendicular QF measures 3 inches.

Fia, 48. How long is the diameter AB?

[Hint. Let z=AP,y=PB. Findz and y, using the fact stated
in Ex. 6, page 80, then take their sum.]

17. Show that the formulas for the length [ and the
width w of the rectangle whose perimeter is a and whose
area is b are

=1(a+Va?—16 ), w=}(a—Va’—16 b).

18. Find the formulas for the radii of two circles in order
that the difference of the areas of the circles shall be d and
the sum of their circumferences shall be s.

7‘1=4 wd+s? and r2=82_4 wd,
4 7s T8

19. Find two fractions whose sum is §, and whose differ-
ence is equal to their product.

20. The diagonal and the longer side of a rectangle are
together five times the shorter side, and the longer side
exceeds the shorter side by 35 yards. What is the area of
the rectangle?



CHAPTER XV
PROGRESSIONS

I. AriTHMETIC PROGRESSION

83. Definition. An arithmetic progression is a sequence
of numbers, called terms, each of which is derived from the
preceding by adding to it a fixed amount, called the common
difference. An arithmetic progression is denoted by the
abbreviation A. P.

Thus 1, 3, 5,7, .- is an A. P. Each term is derived from the
preceding by adding 2, which is therefore the common difference.
The dots indicate that the sequence may be extended as far as one
pleases. Thus the first term after 7 would be 9, the next one would
be 11, ete.

Again, 5,1, —3, =7, —11, --- is an A. P. Here the common
difference is —4.

EXERCISES

Determine which of the following are arithmetic progres-
sions; determine the common difference and the next two
terms of each of the arithmetic progressions.

1. 3,6,9,12, .- 4. 30, 25, 20, 15, 10, ---.

2. 3,5,8,12, ... . 6. —1, —1}, —2, —2%, -,
3. 6,4,2,0, —2,—4,--. 6. a,2a,44a,5a, -

7. a,a+3, a+6, a+9, ---.

8. a,a+d,a+2d,a4+3d, at4d, -

9. z—4y, -2y, x—y, ‘.

10. 32+3y, 6242y, 9x+y, ---.
[HinT. The common difference may always be determined by
subtracting any term from the term immediately preceding.]
141
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11. Write the first five terms of the A. P. in which

(a) The first term is 5 and the common difference is 2.

(b) The first term is —3 and the common difference 1.

(¢) The first term is 3 a and the cominon difference is —b.

84. The nth Term of an Arithmetic Progression. From
the definition (§ 83) it follows that every arithmetic progres-
sion is of the form a, a+d, a+2d, a+3d, a+4d, ---. Here
a is the first term and d the common difference.

Observe that the coefficient of d in any one term is 1 less
than the number of that term. Thus 2 is the coefficient of
d in the third term; 3 is the coefficient of d in the fourth
term, etc. Therefore the coefficient of d in the nth term
must be (n—1). Hence, if we let [ stand for the nth term,
we have the formula

l=a+(n—1)d.
ExampLE. Find the 11th term of the A.P. 1, 3,5,7, ---.

SOLUT16N. ‘We havea=1,d=2,n=11,1="?
The formula gives l=a+(n—1)d=14+10X2=14+20=21. Ans.

EXERCISES

Find the 11th term of 3, 6, 9, 12, ---.

Find the 13th term of 6, 10, 14, 18, ---.

Find the 20th term of 4, 2, 0, —2, —4, ---.

Find the 15th term of —1, —1, —2, —2L, ...
Find the 10th term of z—y, 22—2y,32—-3y, ---.

6. When a small heavy body (like a bullet) drops to the
ground it passes over 16.1 feet the first second, 3 times as far
the second second, 5 times as far the third second, etc. How
far does it go in the 12th second ?

7. If you save 5 cents during the first week in January,
10 cents the second week, 15 cents the third week and so on,
how much will you save during the last week of the year?

R A
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8. What term of the progression 2, 6, 10, 14, .- is equal
to 987
[HiNnT. a=2,d=4,n=7?,1=98.]
9. What term of 3, 7, 11, 15, --- is equal to 59°?
10. The first term of an A. P. is 8 and the 14th term is 47.
What is the common difference ?

85. The Sum of the First n Terms of an Arithmetic Pro-
gression. Let a be the first term of an A. P., d the common
difference, ! the nth term. Then the sum of the first n
terms, which we will call S, is
1) S=a+(a+d)+(a+2d)+(a+3 d)+---+(1—d)+1.

This value for S may be written in a very much simpler
form, as we shall now show.

Write the terms of (1) in their reverse order. This gives
2 S=l+(-d+(-2d)+(1-3d)+ -+ (a+d)+a.

Now add (1) and (2), noting the cancellation of d with —d,
2 d with —2d, ete. The result is

2 8=(a+0)+(a+D)+(a+D)+ -+ (a+D+(a+D),
or 2 S=n(a+1).

Therefore S =g(a+l).

This is the simple form for S mentioned above. If we re-
place I by its value a—\l—(n—l)d (§ 84), this result takes the
form '

S=ggz a+(n—1)d}.

ExampLE. Find the sum of the first 12 terms of the A. P.
2, 6, 10, 14, ---.

SoLuTION. a=2, d=4, n=12.

Therefore, by the second form for S in § 85, we have

S =124 +11X4}=6{4+44} =6 X48=288. Ans.
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EXERCISES

Find the sum of each of the following arithmetic progres-
sions.
The first ten terms of 3, 6, 9, 12, ---.
The first fifteen terms of —2, 0, 2, 4, ---.
The first thirteen terms of 1, 3%, 6, ---.
The first ten terms of 1, —1, —3, =5, ...
The first n terms of 1, 8, 15, ---.

6. How many strokes does a common clock, striking
hours, make in 12 hours?

7. A body falls 16.1 feet the first second, 3 times as far
the second second, 5 times as far the third second, etc. How
far does it fall during the first 12 seconds?

8. Find the sum of all odd integers, beginning with 1 and
ending with 99.

9. If you save 5 cents during the first week in January,
10 cents during the second week, 15 cents the third week,
and so on, how much will you save in a year?

10. The first term of an A. P. is 4 and the 10th term is 31.
What is the sum of the 10 terms? '

[Hint. a=4, n=10, l=31. Now use the first of the formulas
in § 85.]

11. The first term of an A. P. is  and the 12th term is
114. What is the sum of the 12 terms?

12. TFigure 49 shows a series of 16
dotted lines which are equally distant
from each other. If the highest one is
6 inches long and the lowest one is 3 feet
long, what is the sum of all their lengths?

[HinT. The lines form an A. P. since their lengths increase uni-
formly.]

o
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13. The rungs of a ladder diminish uniformly from 2 feet
4 inches long at the base to 1 foot 3 inches long at the top.
If there are 24 rungs, what is the total length of wood in
them?

14. Find the sum of the circumferences
of 10 concentric circles if the radius of the
innermost one is 4 inch and the radius of
the outermost one is 4 inches, it being under-
stood that the circles are equally spaced from
Fie. 50. each other.

16. Figure 51 shows a coil of rope in the
ordinary circular form, containing 12 com-
plete turns, or layers. If the ength of the
innermost turn is 4 inches and the length of
the outermost turn is 37 inches, how long is
the rope? Fie. 51,

[HinT. Regard each turn as a circle, thus neglecting the slight
effect due to the overlapping at the beginning of each turn after the
first.] .

16. If in Fig. 51 the length of the innermost turn is a
inches and that of the outermost turn is b
inches, and the number of turns is n, what
represents the total length of the rope?

17. A small rope is wound tightly round a
cone, the number of complete turns being 24.
Upon unwinding the rope from the top, the
lengths of the first and second turns are
found to be 2} inches and 3} inches respec-
tively. How long (approximately) is the rope?
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86. Arithmetic Means. The terms of an arithmetic pro-
gression lying between any two given terms are called the
arithmetic means between those two terms.

Thus, the three arithmetic means between 1 and 9 are 3, 5, 7,
since 1, 3, 5, 7, 9 form an arithmetic progression.

Whenever a single term is inserted in this way between two
numbers, it is briefly called the arithmetic mean of those two
numbers.

Thus, the arithmetic mean of 2 and 10 is 6, because 2, 6, 10 form
an arithmetic progression.

A formula for the arithmetic mean of any two numbers,
as a and b, is easily obtained. Thus, if z is the mean, then
a, z, b forms an A. P. Therefore, we must have z—a=b—z.
Solving for z, this gives

a+b

r=—-

2

Thus we have the following theorem: The arithmetic
mean of two numbers is equal to half their sum.

Note. The arithmetic mean of two numbers is also called their
average.

ExaMpPLE. Insert five arithmetic means between 3 and 33.

SoLuTioN. We are to have an A. P. of 7 terms in which a =3,
1=33, and n=7. Wae begin by finding d. Thus,

l=a+(n—1)d (§ 84) so that 33=3+6d. Solving, d=>5.
The progression is therefore 3, 8, 13, 18, 23, 28, 33 and hence
the desired means are 8, 13, 18, 23, 28. Ans.

EXERCISES

Insert three arithmetic means between 7 and 23.
Insert four arithmetic means between —5 and 10.
Insert seven arithmetic means between % and 253.
What is the arithmetic mean of 8 and 30?

What is the arithmetic mean of § and —17?

o W R
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6. Show that the first formula for S obtained in § 85
may be stated as follows: ¢ The sum of n terms of an arith-
metic progression is equal to » multiplied by the arithmetic
mean of the first and nth terms.”

7. ABCD is any trapezoid (that is, any four-sided figure
having its bases AB and DC parallel to each other). The

line EF, called the median, joins the o c

middle point of the side AD to the
middle point of the side BC, and it is F
shown in geometry that the length of
this line EF will always be the arith- A Fro. 59, B

metic mean of the lengths of the bases
AB and CD. Hence answer the following questions.

(a) If the bases are 10 inches long and 2 inches long,
respectively, what is the length of the median?

() If the lower base is 14 inches long and the median 8
inches long, how long is the upper base?

(c) If the upper base is 3 feet long and the median 4 feet
long, how long is the lower base?

(d) If the bases are a inches long and b inches long, re-
spectively, what represents the length of the median?

8. The figure shows the frustum of a cone and the frus-
tum of a pyramid, and in each case the ‘ mid-section ’’ has

Ve

Fia. 54.

been drawn in (that is, the section made by a plane which
passes midway between the bases AB and BC). It is shown
in solid geometry that in all such cases the perimeter of the
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mid-section will always be the arithmetic mean of the
perimeters of the two bases. Hence answer the following
questions.

(a) If the perimeters of the two bases are 30 inches and 10
inches respectively, what is the perimeter of the mid-section ?

(b) In the frustum of a cone, the radius of the upper base
is 2 inches and that of the lower base 8 inches. What is the
perimeter of the mid-section?

87. The Five Elements of an Arithmetic Progression. In
any arithmetic progression there are the five elements, a, d,
l, n, S, defined in §§ 84, 85. If any three of these are given,
we can always find the other two by means of the formulas
in §§ 84, 85.

- ExampLE 1. Given a=-}, n=30, S=21}. Find 4
and l.

SoruTioN. From §85, wehave S =g(a +).
Hence 211 =15(—} +1).
Solving, !=14}. Now,l=a+(n—1)d. Hence 1{} = —3+29 d.
Solving, d =+%.

ExampLE 2. Given a=3, d=4, S=300. Find » and I.

SoLuTioN. S =g{2 a+(n—1)d}. Hence 300 =g{6+ (n—1)- 4}.

Therefore

600=n{4 n+2}; 4 n2+27n—-600=0; 2 n?4n—300=0.
Solving the last (quadratic) equation by formula (§ 56), gives

—1=v142400_ —1=v2401 _ —1=49_
4 4 4
Since 7 is the number of terms and therefore a positive integer,
it follows that » =12. (See Hint to Ex. 3, p. 89.)
To find I/, we now use the formula I=a+(n—~1)d. Thus

1=3+11-4=3+44=47.

n=

12, or —12}.
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EXERCISES
Given a=3, n=25, §=675, find d and I.
Given a=—9, n=23, =57, find d and S.
Given S=275, =45, n=11, find a and d.
Find n and d when a= -5, =15, S=105.
Find a and n when =1, d=§, S=—20.

6. How many terms are there in the arithmetic pro-
gression 2, 6, 10, --- 70?

7. Given a, l, and n, derive a formula for d.
8. Given g, d, and [, derive a formula for n.

Lol ol o I o

9. Given a, n, and S, derive a formula for .
10. Given d, [, and S, derive a formula for a.

11. Find an A. P. of 14 terms having 13 for its 6th term
and 25 for its 10th term.

12. Find an A. P. of 16 terms such that the sum of the 6th,
7th and 8th terms is —16}, and the sum of its last two terms
is —28.

13. Find three integers in arithmetic progression such that
their sum is 24 and their product 384.

14. The figure represents one of the four
sides of a steel tower such as is commonly seen
at wireless telegraph stations. It is desired to
make one of these towers so that each girder,
such as AB, will be 2 feet longer than the one
just above it, as CD. How many girders will
the tower have (counting all four sides) in case
the total amount of girder steel used is to be
only 864 feet and the lowest girders are each to
have a length of 20 feet?
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II. GEoMETRIC PROGRESSION

88. Definitions. A geometric progression is a sequence
of numbers, called terms, each of which is derived from the
preceding by multiplying it by a fixed amount, called the
common ratio. A geometric progression is denoted by the
abbreviation G. P.

Thus 2, 4, 8, 16,32, --- isa G. P. Each term is derived from the

preceding by multiplying it by 2, which is therefore the common
ratio.

Again, 10, -5, +3, —%, --- is a G. P. whose common ratio is —3.
The next two terms are +3, —%.

EXERCISES

Determine which of the following are geometric progres-
sions, and find the common ratio and the next two terms of
each geometric progression.

3, 6,12, 24, 48, ---.

4,12, 48,75,

Hh o

-1,2, —4,8, —16, -,

a, a?, ad, at, ---.

22,42 825 167, .-

a, ar, ar?, ar3, art, ---.

a, a¥?, a4, a'r®, ---.

(a+b)r (a+b)3, (a'+b)5) (a+b)1; °te

m? mt m® md

e

11. Write the first five terms of the G. P. in which
(a) The first term is 4 and the common ratio is 4.
(b) The first term is —3 and the common ratio is —2.
(¢) The first term is a and the common ratio is r.

=

L B o o

[
e
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89. The nth Term of a Geometric Progression. From the
definition in § 88 it follows that every geometric progression
is of the form

a, ar, ar?, ard, art, ---.
Here a is the first term, and r the common ratio.

Observe that the exponent of r in any one term is 1 less
than the number of that term. Thus 2 is the exponent of
in the third term; 3 is the exponent of r in the fourth term,
etc. Therefore, the exponent of r in the nth term must be
(n—1). Hence, if we let [ stand for the nth term, we have

the formula
l=ar".

ExampLE. Find the 7th term of the G. P. 6, 4, §, ---.
SoruTioN. We have a=6, r=%, n=7,1=?

: —arm1=6%(2\°= 2¢_27 _128
The formula gives l =ar 1—6X(3) —2x3><3°—3‘ 243 Ans.

EXERCISES

Find the ninth term of 2, 4, 8, 16, ---.

Find the eighth term of §, 3, 1, ---.

Find the ninth term of —1, 2, —4, §, ---.

Find the tenth term of 4, 2, 1, 3, ---.

Find the eighth term of 4, %, , ---.

Find the eleventh term of az, a%?, as®, a'z?, ---.

Find the tenth term of 2, V2, 1, ---.

What term of the G. P. 3, 6, 12, 24 is equal to 384?
What term of the progression 6, 4, § is equal to $4?
For every person there has lived two parents, four
grandparents, eight great grandparents, etc. How many
ancestors does a person have belonging to the 7th genera-
tion before himself, assuming that there is no duplication?
Answer also for the 10th generation.

COPI o bR

[
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11. If you save 50 cents during the first three months of
the year and double the amount of your savings every three
months afterward, how much will you save during the last
three months of the second year?

12. From a grain of corn there grew a stalk that produced
an ear of 100 grains. These grains were planted and each .
produced an ear of 100 grains. This was repeated until
there were 5 harvestings. If 75 ears of corn make a bushel,
how many bushels were there the fifth year?

90. The Sum of the First n Terms of a Geometric Progres-
sion. Let a be the first term of a geometric progression, r
the common ratio, ! the nth term. Then the sum of the first
n terms, which we will call S, is
1) S=a+ar+ar*+ar®+---4ar*24-ar~1.

This value for S may be written in a very much simpler
form, as we shall now show.

Multiply both members of (1) by . This gives
2) rS=ar+ar*+ar’+---+ar~'+arn.

Now subtract equation (2) from equation (1), ncdung the
cancelation of terms. This gives

S—rS=a—ar"
Solving this equation for & gives
. gq_a—ar
1—r

This is the simple form for S mentioned above.

It is to be observed also that since =ar*"!, we may write
rl=ar". Putting this value of ar® into the form just found
for S, we obtain as a second expression for S the following
formula.



XV, § 90] PROGRESSIONS 153

ExampLE. Find the sum of the first six terms of the G. P.
3,6,9,12, -
SorLuTiON. a=3,r=2,n=6. Tofind S.
_a—ar"_3-32_3-364_3-192 _ —189 _
§=E il ST S e R et =TI 0 1189, Ans,

EXERCISES

Find the sum of the first

Eight terms of 2, 4, 8, :--.

Six terms of 1, 5, 25, ---.

Five terms of 1, 1}, 21, ...,

Six terms of 2, —2, 2, ---.

Ten terms of —%, 1, —1, ---.

Six terms of 1, 2 a, 4 a2, ---.

Ten terms of 1, a2, a4, ---.

What is the sum of the series 3, 6, 12, ---, 3847
What is the sum of the series 8, 4, 2, -, {5?
Find the sum of the first ten powers of 2.

11. Find the sum of the first seven powers of 3.

12. A series of five squares are drawn such that a side of
the second one is twice as long as a side of the first one, a
side of the third one is twice as long as a side of the second,
etc. If a side of the first one is 2 inches long, find (by § 90)
the sum of the areas of all the squares.

13. What is the combined volume of five spheres if the
radius of the first one is 16 inches, the radius of the second
one is half that of the first one, the radius of the third one is
half that of the second one, and so on to the fifth one? (See
Ex. 14 (e), p. 6.)

14. Half the air in a certain corked empty jug is removed
by each stroke of an air pump. What fraction of the original
volume of air has been removed by the end of the seventh
stroke?

PONDO WD

[
4
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HistoricaL Note. It is related that when Sessa, the inventor
of chess, presented his game to Scheran, an Indian prince, the latter
asked him to name his reward. Sessa begged that the prince would
give him 1 grain of wheat for the first square of the chess board, 2
for the second, 4 for the third, 8 for the fourth, and so on to the sixty-
fourth. Delighted with the inventor’s modesty, the prince ordered
his ministers to make immediate payment. The number of grains
of wheat thus called for was (see § 90)

1-1.24 _26—1

=2 1 241,
But the value of 2% is the enormous number 18,446,744,073,709,
551,616, so the number of grains of wheat owing was but 1 less than
this. This amount is greater than the world’s annual supply at pres-
ent. History does not relate how the claim was settled. (From
Godfrey and Siddons’ Elementary Algebra, Vol. I1, pp. 336, 337.)

91. Geometric Means. The terms of a geometric progres-
sion lying between any two given terms are called the geo-
metric means of those two terms.

Thus the three geometric means of 2 and 32 are 4, 8, 16, since
2, 4, 8, 16, 32 form a geometric progression.

Whenever a stngle term is inserted in this way between two
numbers, it is briefly called the geometric mean of those two
numbers.

Thus the geometric mean of 2 and 32 is 8, since 2, 8, 32 form a
geometric progression.

A formula for the geometric mean of any two numbers,
as a and b, is easily obtained. Thus, if z is the mean, then a,
z, b forms a G. P. Therefore we must have x/a=b/z. Solv-
ing, we have 22=ab, and hence

z=Vab.

Thus, we have the following theorem : The geometric mean
of two numbers 1is equal to the square root of their product.

Note. The geometric mean of two numbers is thus the same as
their mean proportional. See Ex. 6, p. 80.
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ExampLE. Insert four geometric means between 3 and 96.

SoruTioN. We are to have a G. P. of six terms in which a =3,
1=96, and n=6. We begin by finding ». Thus

l=ar~1(§ 89) so that 96 =3 - r5, or r*=32. Hence r=2.
The progression is therefore 3, 6, 12, 24, 48, 96, and hence the
desired means are 6, 12, 24, 48. Ans.
EXERCISES

Insert four geometric means between 2 and 486.
Insert three geometric means between 1 and 625.
Insert five geometric means between 4} and 5.
What is the geometric mean of 2 and 18?
What is the geometric mean of 8 and 50?
What is the geometric mean of  and 3§.

7. Find, correct to four decimal places, the geometric
mean of 6 and 27, using the tables of square roots.

8. Find, correct to four decimal places, the geometric
mean of 2} and 3}.

9. Insert two geometric means between 5 and 9, express-
ing each correct to four decimal places

10. Show that the number of units in a side of the square
is the geometric mean of the number of units in the two un-
equal sides of a rectangle that has the same area.

11. Figure 56 shows a square within which
is placed (in any manner) another square
whose side is half as long as that of the
first square. Show that the area between
the squares is equa' to three halves of the }
mean proportional between the areas of the §
squares themselves. ‘ Fie. 56.

12." Show that the result stated in Ex. 11 holds true also
in the case of the area between two circles, the smaller circle
lying within the larger and having its radius half as long as
that of the larger circle. Draw a figure.

A o o
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92. Infinite Geometric Progression. Consider the geo-
metric progression

(1) 17 'i') %’r %’: 'Ild')
Here a=1, r=4, and hence, by § 90, the sum of n terms is
g=g—ar_1-1-GF)"_1-F",
1—r 1—-3 3

Now, if the value selected for n is very large, the expres-
sion (1/2), which here appears, is very small, being the frac-
tion 4 multiplied into itself n times. In fact, as n is selected
larger and larger, this expression (1/2)* comes to be as small
.as we please, so that the value for S, as given above, comes as

near as we please to
1-0

1
)

which is the same as 2. So we say that 2 is the sum to in-
Jinity of the geometric progression above, meaning thereby
simply that as we sum up the terms, taking more and more
of them, we come as near as we please to 2.

The meaning of this result is seen in the figure below.

r i +——t ”3
Fia. b7.

Here, beginning at the point marked 0, we first measure
«off 1 unit of length, then, continuing to the right, we measure
-off } unit, then 1 unit, then } unit, etc., each time going to
‘the right just one half the amount we went the time before.
As this is kept up indefinitely,” we evidently come as near as
'we please to the point marked 2, which is 2 units from 0.
"This corresponds exactly to what we are doing when we add
more and more of the terms of the given progression

1; i‘: i‘! %‘: TLGW S0t
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A progression like the one just considered, in which the
value of n is not stated but may be taken as large as one
pleases, is called an infinite geometric progression.

Having thus considered the sum to infinity of the special.
infinite geometric progression (1), let us now suppose that we-
have any infinite geometric progression, as

a, ar, ar?, ard, .-,
and (as before) that r has some value numerically (§ 1) less:
than 1. Then the sum of the first n» terms is
a—ar®
S= 1-r’
and, as n is taken larger and larger, the expression ™ which:
appears here becomes as small as we please, since we have:
supposed r to be less than 1. Hence, as » increases indefi--
nitely, the value of S comes as near as we please to
a—a-0
1—-r’
or
2
1—r

We have therefore the following theorem: The sum tor
nfinity of any geometric progression whose common ratio r
18 numerically less than 1 is given by the formula

a

T1-r

Exampre. Find the sum to infinity of the progression
3: 17 ‘i" %‘: '217’ S0t

SoLuTiOoN. a=3,r=%. Since r is numerically less than 1, we:
have by the formula of § 92,
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EXERCISES

Find the sum to infinity of each of the following progres-
. sions, and state in each case what your answer means, draw-
ing a diagram similar to Fig. 57 to illustrate.

1.1, '3" '3'7 '991'7 "ot

2. 31 %1 ]26'; ‘o'aT, ttt.

3. 1, =%, % —dn

[HiNT. r=—}% and hence is numerically less than 1. The
formula of § 92 therefore applies.]

4. 5, .5, .05, .005, ---.

6. %’1 "Il‘s‘: ‘8?1'1

6. 1—z+42*—2*+ --- when z=§.
1 1

7. V2, L5 2

10. A pendulum starts at A and swings
to B, then it swings back as far as C,
then forward as far as D, ete. If the
first swing (that is, the circular arc from
A to B) is 6 inches long and each suc-
ceeding swing is five sixths as long as the
one just preceding it, how far will the
pendulum bob travel before coming to
rest?

11. At what time after 3 o’clock do the hands of a watch
pass each other?

[HinT. We may look at this as follows: The large (minute)
hand first moves down to where the small (hour) hand is at the be-
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ginning, that is through 15 of the minute spaces along the dial.
Meanwhile the small hand advances {; as far or 1§ of a minute space.
This brings the small hand to the position indicated by the dotted
line in the figure. The large hand next passes
over this 1§ of a minute space. Meanwhile
the small hand again advances {5 as far, which
is {5 of a minute space. The large hand next
covers this {1 of a minute space, but the small
hand meanwhile advances {/; as far, or 1§
of a minute space, ete. Thus, the successive
movesof the large hand, counting from the first
one, form the G. P. 15, 13, {2, o .
The sum of this to infinity will be the total distance passed over
by the large hand §efore the hands pass.]

93. Variable. Limit. Wehave seen (§ 92), in connection
with the geometric progression 1, 3, 1, %, ---, that the sum of
its first » terms is a quantity which, as n increases indefinitely,
comes and remains as near as we please to the exact value 2.
The usual way of stating this is to say that as n increases,
the sum of the first n terms approaches 2 as a limit. The sum
of the first n terms is here called a variable since it varies, or
changes, in the discussion. A similar remark applies to all
the infinite geometric progressions which we have consid-
ered. In every case the sum to infinity is the limit which
the sum of the first n terms, considered as a variable quantity,
is approaching.

Note. It may be asked whether the sum of the first n terms of
the G. P. 1, §, 1, 3, --- could ever actually reach its limit 2. The
answer is that it may or it may not, depending upon circumstances.
Thus, if we think of the terms, beginning with the second, as being
added on at the rate of one a minute we could never reach the end of
the adding process, since the number of the terms is inexhaustible and
hence the minutes required would have no end. In other words,
the sum of the first n terms could never reach its limit on this plan.
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But suppose that instead of this we were to add on the terms with
increasing speed as we went forward. For example, suppose we
added on the } in } a minute, then the } in } of a minute, then the
4 in } of a minute, etc. On this plan we would actually reach the
limit 2 in 2 minutes of time. Here the constantly increasing speed
of the adding process exactly counterbalances the fact that we have
an indefinitely large number of terms to add, with the result that we
reach the end of the process in the definite time of 2 minutes. This
idea is practically illustrated in Ex. 11, p. 159, where the hands of the
watch would never pass each other at all except for the fact that the
successive moves of the large hand, which constitute the terms of
the progression 15, 13, {4, 1433, - areadded onin less and less time
as the process goes on, each being added on in {5 the time occupied
by the one just before it. ¢

The question of whether a variable can reach its limit is inti-
mately connected with the famous problem considered by the
Schoolmen in the Middle Ages and known as the problem of Achilles
and the tortoise. In this problem, Achilles, who was a celebrated
runner and athlete, starts out from some point, as 4, to overtake
a tortoise which is at some point, as T, the tortoise being famous for
the slow rate at which it crawls along. Both start at the same in-
stant and go in the same direction, as indicated in the figure.

- >

A T
Fic. 60.

Achilles soon arrives at the point T, from which the tortoise started,
but in the meantime the tortoise has gone some distance ahead.
Achilles now covers this last distance, but this leaves the tortoise
still ahead, having again gained some additional distance. This
continues indefinitely. How, therefore, can Achilles ever overtake
the tortoise? The Schoolmen never quite answered this question
satisfactorily to themselves. The secret of the difficulty lies in the
fact that, as in the other problems mentioned above, the successive
moves which Achilles makes are done in shorter and shorter inter-
vals of time, with the result that, although the number of moves
necessary is indefinitely great, they can all be accomplished in a
definite time.
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94. Repeating Decimals. If we express the fraction 3%
decimally by dividing 12 by 33 in the usual way, we find that
the quotient is .363636 ---, the dots indicating that the divi-
sion process never stops (or is never exact) but leads to a
never-ending decimal. However, the figures appearing in
this decimal are seen to repeat themselves in a regular order,
since they are made up of 36 repeated again and again.
Such a decimal is called a repeating decimal. More generally,
a repeating decimal is one in which the figures repeat them-
selves after a certain point. Thus, .12343434 ---, 1.653653653
.-, are repeating decimals.

Let us now turn the question around. Thus, suppose
that a certain repeating decimal is given, as for example
272727 ..., and let us ask what fraction when divided out
gives this decimal. This kind of question is usually too
difficult to answer in arithmetic, but it can be easily answered
as follows by use of the formula in § 92.

Thus the decimal .272727 --- may be written in the form

B

This is an infinite geometric progression in which a=47%,
r=135. The sum of this progression to infinity must be the
value of the given decimal. Hence, the desired value is

o _ 4 _27,100_27_3
T 1o, 100590 99~ 11 4™

This answer may be checked by dividing 3 by 11, the re-
sult being .272727 -.-) which is the given decimal.

Note. It is shown in higher mathematics that every rational
fra.ctlgn in its lowest terms (that is, every number of the form a/b,
where a and b are integers prime to each other) gives rise when
divided out to a never-ending, repeating decimal, while every irra-
tional number (such as V'2) gives rise when expressed decimally to
a never-ending non-repeating decimal.

M
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EXERCISES
Find the values of the following repeating decimals and
check your answer for each of the first six.
1. 414141 ---. 2. .898989 ---. 3. .543543543 ---
4. .3414141 ---,

SoLuTIiON. .3414141 ... =.34.0414141-..
=.3+4(-414141 -..)

341 fdo
3+10<1_ :
3 41,41, 100

~10 lO 1007° 99
3+ =338_169 4.,

710 990 990 495

6. .6535353 ---. 8. 5.032032032 ---.
6. 1.212121 --- 9. 6.008008008 ---.
7. 3.2151515 ---. 10. 34.5767676 ---.

MISCELLANREOUS PROBLEMS

I. ArRiTHMETIC PROGRESSION

1. What will be the cost of digging a 20-foot well if the
digging costs 50 cents for the first foot and increases by 25
cents for each succeeding foot ?

2. Fifty-five logs are to be piled so that the top layer
shall consist of 1 log, the next layer of 2 logs, the next layer
of 3 logs, etc. How many logs will lie on the bottom
layer ?

8. In a potato race 30 potatoes are placed at the dis-
tances 6 feet, 9 feet, 12 feet, etc., from a basket. A player
starts from the basket, picks up the potatoes and carries them,
one at a time, to the basket. How far does he go altogether
in doing this?
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4. A row of numbers in arithmetic progression is written
down and afterwards all erased except the 7th and the 12th,
which are found to be —10 and 15, respectively. What was
the 20th number?

6. If your father gives you as many dimes on each of
your birthdays as you are years old on that day, how old
will you be when the total amount he has given you in this
way amounts to $12?

6. How many arithmetic means must be inserted be-
tween the numbers 4 and 25 in order that their sum may
amount to 87°?

7. Prove that equal multiples of the terms of an arith-
metic progression are in arithmetic progression.

8. Prove that the sum of » consecutive odd integers, be-
ginning with 1,is n .

9. The sum of three numbers in arithmetic progression
is 30 and the sum of their squares is 462. What are the
numbers ?

[Hint. The numbers may be represented as z—y, z, z+y.
Form two equations and solve for z and y.]

10. If a person saves $20 the first month and $10 each
month thereafter, how long before his total savings will
amount to $1700?

11. Divide 80 into four parts which are in arithmetic
progression and which are such that the product of the first
and fourth is to the product of the second and third as 2: 3.

12. Find the sum of the first 40 terms of an A.P. in which
the ninth term is 136 and the sum of the first nineteen terms
is 2527. S

13. If d=2, n=21, and S=147, find @ and .

14. Show that if, in any A.P., the values of d, I, and S are
given, then the formula for a is

a=3d=V(+3d)2*—2dS.
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II. GEOMETRIC PROGRESSION

16. A wheel in a certain piece of machinery is making
32 revolutions per second when the steam is turned off and
the wheel begins to slow down, making one half as many
revolutions each second as it did the preceding second. How
long before it will be making only 2 revolutions per second ?

16. Show that if a principal of $p be invested at r 9
compound interest, the sum of money accumulating at the
ends of successive years will form a geometric progression,
while if the investment be made at simple interest, the sums
accumulating will form an arithmetic progression.

17. From a cask of vinegar } the contents is drawn off
and the cask then filled by pouring in water. Show that if
this is done 6 times, the cask will then contain more than
909, water.

[HinT. Call the original amount of vinegar 1, then express (as
a proper fraction) the amount of water in the cask after the first
refilling, second refilling, ete.]

18. A set of concentric circles is drawn, each having a
radius half that of the circle just outside it. Show that the
limit toward which the sum of their circumferences is ap-
proaching is equal to twice the circumference of the largest
circle. )

19. A dipper when hung on a wall often swings back and
forth for a time, the swings gradually dying out. If the first
swing occupies 1 second, and each succeeding swing takes
.9 as long as the one before it, how long before the dipper
comes to rest?

20. It is found by experiment that the number of bacteria
in a sample of milk doubles every 3 hours. What increase
will there be in 24 hours, assuming that all outside conditions
remain the same?
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21. In Fig. 61 a series of ordinates equally spaced from
each other has been drawn, the first one being laid off 1 unit
long, the second one being laid off equal
to the first one increased by % its length,
the third being equal to the second in-
creased by 1 its length, etc. Show that
these ordinates represent the successive
terms of the G. P. whose first term is 1
and whose common ratio is 1}. In this
sense, the figure may be called the dia-
gram for the G. P. in which a=1, r=11

22. Draw the diagram for the G. P. in which
(a) a=1,r=1}; (®) a=2,r=1%; (c) a=4,r=3.

[Hint. Use 8 ordinates only, spacing them at any convenient
but equal distance apart.]

Fia. 61.

23. Prove that any series of numbers formed by writing
down the reciprocals of the successive terms of a geometric
‘progression is itself a geometric progression.

24. Three numbers whose sum is 24 are in arithmetic pro-

gression, but if 3,4, and 7 be added to them respectively, the
results form a geometric progression. Find the numbers.

25. If a series of numbers are in G. P., are their squares
likewise in G. P.? Answer the same for their cubes; also
for their square roots and their cube roots.

Answer the same questions for an A. P.

[HinT. See that your reasoning is general, that is, do not base it
upon an examination of some special cases.]



CHAPTER XVI

RATIO AND PROPORTION

96. Ratio. The quotient of one number divided by another
of the same kind is called their ratio.

Thus the ratio of 6 inches to 3 inches is §, or 2; the ratio of 5 Ib.
to 31b. is §, ete. Note that in each of these cases the ratio is simply
a fraction of the kind studied in arithmetic.

The first number, or dividend, is called the antecedent;
the second number, or divisor, is called the consequent.

Thus, in the ratio $, the antecedent is 3 and the consequent is 4.

EXERCISES

1. What is the ratio of 10 yards to 2 yards? of 7 yards
to 3 yards?

2. State (as a fraction in its simplest form) the value of
each of the following ratios.
(@) 5t025. (c) 3to3. (e) 1to3. (9) 18 x%2to4 22
() 16to12. (d) 2to}. (f) 3ato6d. () 2?—y’tox—y.

8. State which is the antecedent and which the conse-
quent in each of the parts of Ex. 2.

4. What is the ratio of 10 inches to 2 feet?

[Hint. First reduce the 2 feet to inches so that we may com-
pare like numbers, that is numbers measured in the same unit.]

6. The dimensions of a certain grain bin are 3 feet by
6 feet by 7 feet. What is the ratio of its cubical contents to
that of a bin whose dimensions are 3 feet 6 inches by 5 feet
by 1} yards?
166
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6. If one square has its sides each twice as long as the
sides of another square, what is the ratio of the area of the
first square to that of the second?

[HinT. Let a=a side of the smaller square.]

7. If one cube has its edges each twice as long as the edges
of another cube, what is the ratio of the volume of the first
cube to that of the second?

8. Show that if a cylinder and a cone
have the same circular base and the same
height, the ratio of the volume of the cylinder
to that of the cone is 3: 1.

Fia. 62.
9. When we sharpen a lead pencil a cer- 1. 62

tain part of the cylindrical lead is exposed. What part of
the exposed lead is cut off when a smooth conical point is
made? )

96. Proportion. A proportion is an expression of equality
between two ratios, or fractions.

For example, since } is the same as §, we have the proportion = 4.

Likewise, we may write =%, $=4%, —%= —$, ete.; hence
all these are true proportions. But % =4 is not a proportion since
these two fractions are unequal. _

Every proportion is thus seen to be an equality of the form
a/b=c/d, where a, b, ¢, and d are certain numbers. These
four numbers are called the terms of the proportion. The
first and fourth (that is, @ and d) are called the extremes
of the proportion, while the second and third (b and c) are
called the means.

Besides writing a proportion in the form a/b=c/d, it may
be written in the form a:b::c:d, or also in the form a:d=
c:d. In all cases it is read “a 18 fo b as ¢ vs to d,”’ and it
means that the fraction a/b equals the fraction c¢/d.
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EXERCISES

1. Using the language of proportion, read each of the
following statements.

(a) 3=8. (c) 2: —1=8:—4.
) 1:4=3:12. d) $:%::4:3.

2. State which are the extremes and which the means
in each part of Ex. 1.

3. State such proportions as you can make out of the
following four quantities: 3 inches, 6 inches, 12 inches, 24
inches.

[HinT. 3inchesisto 6 inchesas-: - -. Make other proportions also.]

4. State such proportions as you can make out of the
following four quantities: 1 inch, 3 inches, 1 foot, 1 yard.

[Hint. First express all quantities in inches.]

6. State such proportions as you can make out of the
following: 1 pint, 1 quart, 1 gallon, 2 gallons.

6. Do as in Ex. 5 for the following: 2 seconds 1 minute,
1 hour, a day and a quarter.

7. Do as in Ex. 5 for the folowing: 1 cent, 1 dollar, 1
centimeter, 1 meter.

[HinT. Compare money ratio with distance ratio.]

8. Do as in Ex. 5 for the following: 4 ounces, 1 pound,
1 gallon, 1 quart.

97. Algebraic Proportions. If we consider the algebraic
fraction (a?b)/(ab?), we see (upon dividing both numerator
and denominator by ab) that it reduces to a/b. In other
words, we have

a®b_a
ab* b
This is an example of an algebraic proportion. Similarly,
2a%_a
4zxyz 22
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is an algebraic proportlon and may be written if desired in
the form

22%:4xyz=x:22.
Likewise, since

we have
—b:a—b=a+b:1.

98. 'Fundamental Theorem. Let a/b=c/d be any pro-
portion. By multiplying both sides of this equality by bd,
we obtain )

2 xpd=2< xbg,
¥ &
or
ad=bc.

This result may be stated in the following theorem.

TrEOREM A. In any proportion, the product of the means
18 equal to the product of the extremes.

This theorem is useful in testmg the correctness of a
proportion. Thus 6:9=14:21 is a correct proportion be-
cause the product of the means, which is 9 X14, is equal to
the product of the extremes, which is 6 X21; but 6:9=8:15
is not correct because 9 X8 is not equal to 6 X15. Similarly,
22’y =zx:y, because 2% - x=1a3 - y.

EXERCISES

By means of the theorem of § 98, test the correctness of
the following proportions.

-1, 5:6=15:18. 6. 17:19=21:23.

2. 3:2=5:6. 6. 2a:ab=10z:5 bz.

8 4:—-1=8:-2. 7. 3m?:(a—b)=6m:2m(a=D).

4. }:1=8:4. 8. (22— :2z+2y)=(22—-27y):4.

9. (a2—0%): (a+b)2=(a—b): (a+D).
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By means of the theorem of § 98, determine the value
which x must have in the following proportions.

10. z:4 =3:2.

[HinT. The theorem gives4-3=z- 2,0r12=22z.]

11, 10:z=2:5. 13. (z—5):4::2:3.

12. 25/32=8/x. 14. (z—3)/(x—4)=5/6.

16. What number bears the same ratio to 4 as 16 does to
6?

[HinT. Let z represent the unknown number and form a pro-
portion.] )

16. Divide 35 into two parts whose ratio shall be §.

[Hint. Let z be one part. Then 35—z will be the other part.]

17. Divide 35 into two parts such that the lesser dimin-
ished by 4 is to the larger increased by 9 as 1: 3.

18. A man’s income from two investments is $980. The
two investments bear interest rates which are in the ratio
of 5to 6. What income does he receive from each ?

19. Concrete for sidewalks is a mixture made of two parts
sand to one part cement. How much of each is required to
make a walk containing 1500 cubic feet ?

20. Prove that no four consecutive numbers, as n, n+1,
n+2, n+3, can form a proportion in the order given.

99. Application to Similar Figures. When two geometric
figures have the same shape, though not necessarily the same
size, they are called similar figures. Thus any two circles
are similar figures; likewise, any two squares, or any two
cubes, or any two spheres.

Two triangles may be similar, as
1llustrated in Fig. 63.
The following facts are shown in
b geometry regarding any two similar

Fic. 63. figures.
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(a) Corresponding lines are proportional.

Thus, in the two similar triangles of Fig. 63, if the side AB of the
one is twice as long as the corresponding side A’B’ of the other, then
BC is twice as long as B’C’. That is,

AB _ BC

AIBI ICI .
In the same way, we have also

AB _ CA

A'B' C'A’

(b) Areas are proportional to the squares of correspondmg
lines.
Thus, if one circle has a radius of length R and another circle has

a radius of length r, the area, A4, of the first is to the area, a, of the
second as R?is to 72. That is we have the proportion A /a = R?/r.

(¢) Volumes are proportional to the cubes of corresponding
lines.

Thus, if one sphere has the radius R and another has the radius r,
the volumes V and v of the spheres are such that V /v =R3/r3.

EXERCISES ON SIMILAR FIGURES

1. In the two similar triangles shown in § 99 suppose
AB=2 feet, A'B'=1 foot 4 inches, and BC=3 feet. How
long will B'C’ be?

2. If a tree casts a shadow 40 feet long when a post 3}
feet high casts a shadow 4 feet long, how high is the tree?

3. Compare the areas of two city lots of the same shape
if a side of the one is three times as long as the corresponding
side of the other. Does it matter what the shape of each is?

4. If a certain bottle holds 4 pint, how much will a bottle
of the same shape but only half as high hold ?
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100. Mean Proportional. If the means of a proportion
are equal, either is called the mean proportional between the
extremes. .

Thus 2 is the mean proportional between 1 and 4 because
4=%. Likewise, 2z is the mean proportional between z? and 4,
because z2/2 =2 z /4.

Note. The mean proportional between a and b is always equal
to Vab, for we must have a/x=z/b. Hence, clearing of fractions,
22 =ab, and therefore z = Vab. This will be a surd (§ 42) unless the
product ab is a perfect square. For example, the mean proportional
between 2 and 3 is the surd V2~ 3, or V6 =2.44949 (table).

101. Third and Fourth Proportionals. The third propor-
tional to two numbers a¢ and b is that number z such that
a:b=b:z.

Thus the third proportional to 2 and 3 is the value of z in the

equation 2

2_3 ing, z=2=
35 Solving, z=§=4}. Ans.

The fourth proportional tu three numbers g, b, and ¢ is that
number z such that a:b=c:z.
Thus the fourth proportional to 2, 3, and 4 is the value of z in
the equation 2/3 =4/x. Solving, z=6. Ans.
EXERCISES

1. Find the mean proportional between 8 and 18.
[Hint. Letzbethedesired mean. Then8/z=z/18. Solvefor z.]
Find the mean proportional between each of the follow-

ing pairs of numbers. In cases where the answer is a numer-
ical surd, use the table to find its approximate value.

2. 9and 81. 6. 4 and 1¢.

8. 6and7. 7. 2} and 33}.

4. 5 and 20. 8. 2x% and 32 2

5. 5and 19. 9, ¥=5atb, ga*—2a-3

a+1 a—3
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Find the third proportional to each of the following pairs.
10. 3 and 4. 12. 21 and 3}. 14. 2?—9 and z—3.
11. 18 and 50. 13. 2z and =z. 15. 2 and 6.

Find the fourth proportional to each of the following sets.

16. 3,4, and 5. 19. V2, ¥6, and Vi2.
17. 5, 4, and 2. 20. 3a,2b, and c.
18. 2, 33, 43. 21. z,y, and zy.

Note. In Exs. 16-21, the numbers must be placed in the pro-
portion in the order in which they are given, as in the illustrative
examples of § 101.

C

22. In the semicircle ABC suppose D
DE drawn perpendicular to AB. Then
(as shown in geometry) the length of
DE will be the mean proportional A B
between the lengths of AF and EB. Fre. 64.

If AE=4 inches and EB =16 inches, find DE.

23. The figure shows a circle and a point P outside it
from which are drawn two lines PS and PT. The first of
p these lines (called a secant) cuts through the

circle at two points R and S while the
second line (called a fangent) just touches
the circle at the point 7. In all such cases,
the tangent length, PT, is the mean pro-
portional between the whole secant, PS, and
S its external segment, PR (as shown in
Fra. 65. geometry).
Find the length of PT if PR=4 and RS=11.

24. If a, b, ¢, d are unequal numbers such that a:b=c:d,
show that no number z can be found such that

atz:b+zx=ct+zx:d+zx.

T R
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102. Second Fundamental Theorem. THEOREM B. If
the product of two numbers 13 equal to the product of two other
numbers, either pair may be made the means of a proportion
in which the other two are taken as the extremes.

Proor. Suppose mn=zy. Dividing both members by
nx gives m/T=y/n, orm: x=y: n, which is one of the possible
proportions mentioned in the theorem.

Similarly, if we divide both members of mn=zy by ny we
obtain m/y=z/n, or m:y==x:n, which is another of the
possible proportions mentioned in the theorem.

The other possible proportions are z: m=n:y and n:z=
y:m. The proof of these is left to the pupil.

For example, the equality 2- 9=3 - 6 gives rise to the propor-
tions 2:3=6:9,2:6=3:9,9:3=6:2,and 9:6=3:2.

103. Inversion in a Proportion. TrEorEM C. If four
quantities are tn proportion, they are in proportion by inversion;
that is the second term is to the first as the fourth is to the
third.

Proor. We are to show that if a/b=c/d, then b/a=d/c.

Since a/b=c/d, we have, by Theorem A, ad=bc.

Therefore, by Theorem B, we may write b/a=d/c.

For example, § =$ gives by inversion the new proportion § = §.

104. Alternation in a Proportion. TrEOREM D. If four
quantities are in proportion, they are in proportion by alterna-
t'on; that is the first term is to the third as the second is to
the fourth.

The proof is left to the pupil. First use Theorem A. See
proof of Theorem C.

For example, § =$ gives by alternation the new proportion 3 =$-

106. Composition in a Proportion. TaEOREM E. If
four gquantities are in proportion, they are in proportion by
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composition; that is the sum of the first two terms is to the
second term as the sum of the last two terms is to the last
term. .
- Proor. Weare to show that if a/b=c/d, then (a+b)/b=
(c+d)/d.
Since a/b=c/d, we may add 1 to each member of this equa-

tion, thus giving

44 1=C.41, whi atb_ctd,

l—)+1 d,+ 1, which reduces to b d

For example, §=§ gives by composition the new proportion
(2+3)/3=(6+9)/9, or §=.

106. Division in a Proportion. TreoREM F. If four
quantities are in proportion, they are in proportion by division;
that is, the difference between the first two terms is to the
second term as the difference between the last two terms is to
the last term.

Proor. We are to show that if a/b ¢/d, then (a—b)/b=
(c—d)/d. '

Since a/b=c/d, we may subtract 1 from each side of this
equatlon, thus obtaining

—b_c—d
5 l—d 1, which reduces to T——d—-

For example, §=§ gives by division the new proportion

(3—-2)/2=(9-6)/6, or 1 =3.

107. Composition and Division. TaeorEM G. If four
quantities are in proportion, they are in proportion by composi-
tion and division; that is the sum of the first two terms is to
their difference as the sum of the last two terms is to their
difference.

Proor. We are to show that if a/b=c/d, then

atb_ctd
a=b c—d
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By Theorems E and F, we have
at+b_c+d 4 a=b_c—d

b d’ b d
By dividing the first of these equations by the second,
member by member, we obtain the desired result, namely
atb_c+d,
a-b c—d
For example, § =4 gives by composition and division the new pro-
portion (3+2)/(@ —2) =(9+6)/(9 —6), or § =15,

108. Several Equal Ratios. TaEOREM H. Ina series of
‘equal ratios, the sum of the antecedents s to the sum of the conse-
quents as any antecedent s to its consequent.
Proor. We are to show that if a/b=c/d=e/f=g/h="---,
then
atctetg+---_a_c_e_g

e m e =Y == e

b+d+f+h+-- b d f h
Let & be the value of any one of the equal ratios, so that
=9 =9 =§ =£ e
k b,k d’k f’k R
Then a=kb, c=kd, e=kf, g=kh, ---.
Hence
atctetgt--_kbtdHfHht--) g
b+d+f+h+--  b+d+f+ht-

atctetgt---_a_c_e_g_

=—m=T = e

btd+f+h+-— b d f h

or

For example, the three equal ratios $ =4 =% give the new pro-
portions
2+446_2_4_6
34649 3 6 9
or
12_2_4_6
18 3 6 9
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‘ EXERCISES

1. Given the proportion §=215 Write down the vari-
ous proportions to be obtained from this by (1) inversion,
(2) alternation, (3) composition, (4) division, (5) composi-
tion and division. Note that each new proportion thus ob-
tained is a true one.

2. Show that if a/b=c/d, then a?/b*=c?/d?; in other
words, if four numbers are in proportion, their squares are
also in proportion.

3. Show that if four numbers are in proportion, their
cubes are also in proportion; likewise their square roots;
likewise their cube roots.

4. Show by means of Theorem A (§ 98) that a/b=a?/b?
is mot a true proportion, unless a=b. In other words, the
ratio of two numbers is not in general the same as the ratio
of their squares. Prove similarly that the ratio of two num-
bers is not in general the same as the ratio of their cubes,
or of their square roots, or of their cube roots.

6. If a: b=c: d, establish the following proportions.

(@) a?:b%c*=1:d2

SovLuTion. It suffices to show here that the product of the
extremes is equal to the product of the means, for if these two
products are the same, the proportion in question is true by Theorem
B. Thus we are to prove that a?d? =b%c?.

Now, we know (by hypothesis) that a:b=c:d, or ad=bc.
Squaring gives, as desired, a*d?=b%c?, thus completing the proof.

®) ac:bd=c*: d%.

[HinT. Remember to use the hypothesis, namely thata:b=c: d.]

(¢) Vad: Vb=Vec:1. (d) a:at+b=a+c: a+b+ctd.

(¢) a+b: c+d=Var+b: V+d.

(f) a+b+c+d:a—b+c—d=a+b—c—d:a—b—c+d.

(9) fa:b=c:d,and z:y=2:w, show that ax : cz=by : dw.

N



CHAPTER XVII
VARIATION

109. Direct Variation. One quantity is said to vary
directly as another when the two are so related that, though
the quantities themselves may change, their ratio never
changes.

Thus the amount of work a man does varies directly as the
number of hours he works. For example, if it takes him 4 hours to
draw 10 loads of sand, we can say it will take him 8 hours to draw 20
loads. Here the first ratio is 14 and the second is -% and the two
are seen to be equal, though the numbers in the second have been
changed from what they were in the first. In general, if the man
works twice as long, he will draw twice as much ; if he works three
times as long, he will draw three times as much, ete. ; all of which
implies that the ratio of the time he works to the amount he draws
in that time never changes.

EXERCISES

Determine which of the following statements are true and-
which false, giving your reason in each instance.

1. The amount of electricity used in lighting a room
varies directly as the number of lights turned on.

2. The amount of water in a cylindrical pail varies
directly as the height to which the water stands in the
pail. ’

178
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3. The amount of gasoline used by an automobile in any
given time (one week, say) varies directly as the amount
of driving done.

4. The time it takes to walk from one place to another
at any given rate (3 miles an hour, say) varies directly as the
distance between the two places.

6. The time it takes to walk any given distance (5 miles,
say) varies directly as the rate of walking.

6. The perimeter of a square varies directly as the length
of one side.

7. The circumference of a circle varies directly as the
length of the radius.

8. The area of a square varies directly as the length of
one side.

9. z varies directly as 10 z.
10. z varies directly as 10 22

110. Inverse Variation One quantity, or number, is said
to vary inversely as another when the two are so related that,
though the quantities themselves may change, their product
never changes.

Thus the time occupied in doing any given piece of work varies
inversely as the number of men employed to do it. For example,
if it takes 2 men 6 days, it will take 4 men only 3 days. The point
to be observed here is that the first produect, 2 X6, equals the second
product, 4 X3. In general, if twice as many men are employed it
will take half as long; if three times as many men are employed, it
will take one third as long, ete. In all these cases, the number of
men employed multiplied by the corresponding time required to do
the work remains the same.

Note. The term varies inversely as is due to the fact that in
case zy never changes (as required by the above definition), it
follows that z-+(1/y) never changes, since zy=z+(1/y). That
is, z varies directly as the reciprocal, or inverse, of y (§ 109).
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EXERCISES

Determine which of the following statements are true and
which false, giving your reason in each instance.

1. The time it takes water to drain off a roof varies in-
versely as the number of (equal sized) conductor pipes.

2. The time it takes to walk any given distance (5 miles,
say) varies inversely as the rate of walking. (Compare
Ex. 5, p. 179.)

3. The weight of a pail of water varies inversely as the
amount of water that has been poured out of it.

4. z varies inversely as 10/z.

6. z varies inversely as 10/z2

111. Joint Variation. One quantity, or number, is said to
vary jointly as two others when it varies directly as their
product.

Thus the area of a triangle varies jointly as its base and altitude,
for if A be the area of any triangle and b its base and & its altitude,
we have A =3} bk, which may be written A/bh=%. Whence A
varies directly as the produet bk (§ 109), that is the ratio of A to
bh is always the same, namely % in this instance.

EXERCISES

Determine whether the following statements are true,
giving your reason in each instance.

1. The area of a rectangle varies jointly as its two
dimensions, that is as its length and breadth.

2. The pay received by a workman varies jointly as his
daily wage and the number of days he works.

8. The amount of reading matter in a book varies jointly
as the thickness of the book and the distance between the
lines of print on the page.
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4. The interest received in one year from an investment
varies jointly as the principal and rate.

5. The volume of a rectangular parallelepiped (such as
an ordinary rectangular shaped box) varies jointly as its
length, breadth, and height.

[Hint. Here we have one quantity varying jointly as three
others. First make a deﬁmtlon yourself of what such variation
means.]

112. Variables and Constants. When we say that the
amount of work a man does varies directly as the number of
hours he works (see § 109), we are dealing with two quanti-
ties, namely the amount of work done and the time used in
doing it. But it is to be observed that these are net being
regarded as fixed quantities, but rather as changeable ones,
the only essential idea being that their ratia never changes.
In general, quantities which are thus changeable throughout
any discussion or problem are called variables, while qua.n-
tities which do not change are called constants.

113. The Different Types of Variation Stated as Equa-
tions. We may now state very briefly and concisely what is
meant by the different types of variation mentioned in
§§ 109-111 and certain other important types also. To do
this, let us think of z, y, and 2z as being certam va.nabl&&
and k as being some constant. Then

(1) To say that x varies directly as y means (by § 109) that

——_ k, or xz=ky.
() To say that x vag"ie_s @nversqu as y means (by § 110) that
Y= k, | 61' z= ’f
@) Tosay that z vames ]o'mtly asy and zmeans (by § 111) that

-y—z—k or zr=kyz.
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Two other important types of variation are described
below :
(4) To say that x varies directly as the square of y means that

%=k, or z=ky
Y
(5) To say that x varies inversely as the square of y means that
k
zy*=k, or x=;2-

In all these types of variation it is important to observe
that the value which must be given to the constant k¥ depends
upon the particular statement or problem in hand. For
example, consider the statement that ‘ The area of a rec-
tangle varies jointly as its two dimensions.” This means
(see (3)) that if we let A be the variable area and a and b
the variable dimensions, then A =kab. But in this case we
know by arithmetic that A =ab, so the value of k here must
be 1. On the other hand, consider the statement that ¢ The
area of a triangle varies jointly as its base and altitude.”
Letting A be the variable area and b and k the variable base
and altitude, respectively, this means that A=kbk. But
here, as we know from arithmetic, k=3}.

EXERCISES

Convert each of the following statements into equations,
supplying for each the proper value for the constant k
mentioned in § 113.

1. The circumference of a circle varies directly as the
radius.

[HinT. Let C stand for circumference and r for radius.]

2. The circumference of a circle varies directly as the
diameter.

8. The area of a circle varies directly as the square of the
radius.
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4. The area of a circle varies directly as the square of the
diameter.

6. The area of a sphere varies directly as the square of
the radius. (See § 14, (f).)

6. The volume of a rectangular parallelepiped varies
jointly as its length, breadth, and height. (See Ex. 5, p. 181.)

7. Interest varies jointly as the principal, rate, and time.

8. The volume of a sphere varies directly as the cube
of the radius.

[Hint. First supply for yourself the definition of what this
type of variation means.]

9. The volume of a circular cone varies jointly as the alti-
tude and the square of the radius of the base. (See p. 103.)

10. The distance, measured in feet, through which a body
falls if dropped vertically downward from a position of rest
(as from a window ledge) varies directly as the square of the
number of seconds it has been falling.

[Hint. It is found by experiments in physies that the value of
the constant k is in this case 32 (approximately).]

11. The following, like Ex. 10, are statements of well-
known physical laws. Convert each into an equation with-
out, however, attempting to supply the proper value of k,
since to do so requires a study of physics.

(@) If a body is tied to a string and swung round and round
in a circle (as in swinging a pail of water at arm’s length
from the shoulder), the force, F, with which it pulls outward
from the center (called centrifugal force) varies directly as the
square of the velocity of the motion.

(b) The intensity of the illumination due to any small
source of light (such as a candle) varies inversely as the square
of the distance of the object illuminated from the source of

light.
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(c) When an elastic string is stretched out, as represented
in Fig. 66, the tension (force tending to pull it apart at any
point) varies directly as the length to which the string has

been stretched (Hooke's Law).
AN

N
Fia. 66.

" (d) The pressure per square inch which a given amount
of gas (such as air, or hydrogen, or oxygen, or illuminating
gas) exerts upon the sides of the receptacle which holds

the gas (such as a bag) varies
inversely as the volume of the
receptacle (Boyle’s Law).

For example, whenever air is con-
fined in arubber balloon, as in the first
drawing in Fig. 67, it exerts a certain
pressure upon each square inch of the

F interior surface. If the balloon be
16. 67. . .
squeezed, as in the second drawing
. in Fig. 67 (no air being allowed to escape), until its volume is half
_’of what it was before, this pressure will be exactly doubled.

' 114. Problems :in Variation. The problems naturally
arising in the study of variation fall into two general classes
as follows :

(1) Those in which the value of the constant ¥ mentioned
in § 113 can be determined from the statement of the problem
and forms an essential part in the solution. This kind of
problem is illustrated by Exs. 1-10 on pages 185-187. The
solution given for Ex. 1 should be well understood before the
pupil undertakes Exs. 2-10.
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(2) Those in which it is not necessary to know the value of
k. Such problems are illustrated in Exs. 11-20, pp. 187-189.

The pupil is advised to work several problems from each
group rather than to confine his attention to either.

EXERCISES
I. TuLusTRATIONS OF CASE (1)

1. In a fleet of ships all made from the same model (that
is, of the same shape, but of different sizes) the area of the
deck varies directly as the square of the length of the ship.
If the ship whose length is 200 feet has 5000 square feet of
deck, how many square feet in the deck of the ship which
is 300 feet long?

SoruTioN. Let A represent the area of deck on the ship whose
length is I. Then the given law of variation, expressed as an
equation (§ 113), is
(1) A =FkB. (k=some constant)

Since the ship which is 200 feet long has 5000 square feet of deck,
it follows from (1) that we must have

5000 = £(200)2.

This equation tells us that the value of k in the present problem
must be

Placing this value of k in (1), gives us an equation which deter-
mines completely the relation between A and ! in the present problem,
that is

@) A=}n

Now the problem asks how many square feet of deck there are
in the ship whose length is 300 feet. This can be found by simply
placing ! =300 in (2) and solving for A. Thus

A =§x<3oo)==3ﬂ'i§3i°-9=11,250 square feet. Ans.
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Nore. Observe that the first step in the above solution is to
express as an equalion the law of variation belonging to the problem.
Next, the constant & is determined. After this, the first equation
is rewritten in its more exact form obtained by assigning to k its
value. The answer is then readily obtained.

These steps should be followed in working each of the Exs. 2-10.

2. In a fleet of ships all of the same model, the ship whose
length is 200 feet contains 6000 square feet in its deck. How
long must a similar ship be made if its deck is to contain
13,500 square feet?

8. To make a suit of clothes for a man who is 5 feet
8 inches high requires 6 square yards of cloth. How much
cloth will be required to make a suit for a man of similar build,
whose height is 6 feet 2 inches?

[Hint. The areas of any two similar figures vary directly as
the squares of their heights.]

4. If 10 men can do a piece of work in 20 days, how long
will it take 25 men to do it?

[HinT. The time required varies inversely.a.s the number of
men employed.]

5. The horsepower required to propel a ship varies di-
rectly as the cube of the speed. If the horsepower is 2000
. at a speed of 10 knots, what will it be at a speed of 15
knots?

6. A silver loving-cup (such as is sometimes given as a
prize in athletic contests) is to be made, and a model is first
prepared out of wood. The model is 8 inches high and
weighs 12 ounces. What will the loving-cup cost if made
10 inches high, it being given that silver is 17 times as heavy
as wood and costs $2.20 an ounce?

[Hint. The volumes and hence the weights of any two similar
figures vary directly as the cubes of their heights. See § 99 (c).]
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7. When electricity flows through a wire, the wire offers
a certain resistance to its passage. The unit of this resist-
ance is called the ohm, and for a given length of wire the
resistance varies inversely as the square of the diameter. If
a certain length of wire whose diameter is 1 inch offers a
resistance of 3 ohms, what will be the resistance of a similar
wire (same length and material) 1 of an inch in diameter?

8. Three spheres of lead whose radii are 6 inches, 8 inches,
and 10 inches respectively are melted and made into one.
What is the radius of the resulting sphere?

9. On board a ship at sea the distance of the horizon
varies directly as the square root of one’s height above the
water. If, at a height of 20 feet, the horizon is 5.5 miles dis-
tant, what is its distance as seen from a light-house 80 feet
above sea-level ?

10. The horsepower that a shaft can safely transmit
varies jointly as its speed in revolutions per minute and the
cube of its diameter. A 3-inch steel shaft making 100 revo-
lutions per minute can transmit 85 horsepower. How many
horsepower can a 4-inch shaft transmit at a speed of 150
revolutions per minute?

II. IrLusTRATIONS OF CaAsE (2)

11. Knowing that the force of gravitation due to the
earth varies inversely as the square of the distance from the
earth’s center (Newton’s Law of Gravitation), find how far
above the earth’s surface a body must be taken in order to
lose half its weight.

SoLuTtioN. Letting W represent the weight of a given body at the

distance d from the earth’s center, the law stated above, when ex-
pressed as an equation, becomes

1) W= 3’- (k =some constant)



188 SECOND COURSE IN ALGEBRA [XVII, § 114

Now let W, represent the weight of the body when on the surface.
Remembering that the earth’s radius is 4000 miles (approximately),
equation (1) gives '

@ W= 000

Next, let = represent the desired distance, namely the distance
above the surface at which the same body loses half its weight.
At this distance its weight will consequently be 1W,, while its dis-
tance from the earth’s center is now 4000+z. So (1) gives
@) W __k__

2 (4000+z)? _

Dividing equation (3) by equation (2), noting the cancelation of

Wi on the left and of the (unknown) % on the right, we obtain

1__ 4000®
2 (4000+z)?

It remains only to solve this equation for z.
Clearing of fractions, (4000+z)2=2. 40002 =4000? - 2.
Extracting the square root of both members, 4000 +z =4000V2.
Solving,  z=4000V2—4000=4000(V2 —1) miles. Ans.
To find the approximate value of this answer, we have (see table)
V2 =141421
so that £ =4000(1.41421 —1) =4000 X.41421 =1656.84 miles. Ans.

NoTe. Observe that the first step in the above solution (as
also in the preceding exercises) is to express as an equation the law
of variation belonging to the problem. Then write down the two
special equations which express the particular conditions given in
the problem and divide one of these equations by the other to
eliminate the unknown k. The answer is then readily obtained.
A similar process should be followed in working the remaining
exercises of this list. '

12. Show that the earth’s attraction at a point on the sur-
face is over 5000 times as strong as at the distance of the
moon, that is at the (approximate) distance of 280,000
miles.

[Hint. Call W, the weight of a given body on the surface, and
let W, represent the weight of the same body at the distance of the
moon from the earth’s center. Then use the law expmessed in (1)
of the solution of Ex. 11.]
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13. A book is being held at a distance of 2 feet from an’
incandescent lamp. How much nearer must it be brought.
in order that the illumination on the page shall be doubled ?
(See Ex. 11 (b), p. 183.) e

'~

14. If two like coins (such as quarter dollars) were melted
and made into a single coin of the same thickness as the origi-
nal, show that its diameter would be V'2 times as great.

[HinT. Call D the diameter of the given coins and A the area
of each. Note that the area of the new coin will then be 24. TUse
the result stated in Ex. 3, p. 182.]

n 16. Find the result in Ex. 14 when four equal-sized coins

are used. yol o

16. Show that a falling body will pass over the second
3 feet of its descent in about .4 of the time it takes it to
pass over the first 3 feet. (See Ex. 10, p. 183.)

. 17. The time required for a pendulum to make a complete
oscillation (swing forward and back) varies directly as the
square root of its length. By how much must a 2-foot pendu-
lum be shortened in order that its time of complete oscilla-
tion may be halved?

18. If the diameter of a sphere be increased by 109, by
what per cent will the volume be increased ¥

19. Show that if a city is receiving its water supply by
means of a main (large pipe) from a reservoir, the supply
can be increased 259, by increasing the diameter of the main
by about 12%,.

20. It is desired to build a ship similar in shapc to one
already in use but having a 409, greater cargo space (or hold).
By what per cent must the beam (width of the ship) be in-
creased. (See § 99 (¢).)
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116. Variation Geometrically Considered. If a variable
y varies directly as another variable z, we know (§ 113) that
this is equivalent to having the equation y==kz, where k is
some constant. If the value of k is 1, this equation takes the
definite form y=z, and we may now draw its graph, the
result being a certain straight line. If, on the other hand,
k=2, we have y=2z, and this again is an equation whose

F1a. 68.— DIRECT VARIATION.

graph may be drawn, leading to a straight line, but a differ-
ent one. In general, whatever the value of k, the corre-
sponding equation has a straight-line graph. The fact that in
all cases the graph is a stratght line characterizes this type
of variation, that is, characterizes the type in which one
variable varies directly as another. The figure shows the
lines corresponding to several different values of k.
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In case a variable y varies inversely as another variable z,
we know (§ 113) that there exists an equation of the form
y=k/x, where k is some constant. If we let k=1, this be-
comes y=1/x. By letting = take a series of values and
.determining the corresponding values of y from this equa-
tion (thus forming a table as in § 57) we obtain the graph.
Similarly, corresponding to the value k=2 we have y=2/z,

F16. 69. — INVERSE VARIATION.

and this equation has a definite graph which is different from
the one just mentioned. In general, whatever the value of &,
the corresponding equation has a graph, but it is now to be
noted that these graphs are not straight lines; they are
hyperbolas. (See Ex. 2, § 78.) The figure shows the curves
corresponding to several different values of k.

Nore. Though these curves differ in form, they have the follow-
ing feature in common: Through the origin draw any two straight
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lines (dotted in figure). Then the intercepted ares AB, CD, EF,
GH, etc., are similar, that is the smallest arc when simply magnified
by the proper amount produces one of the others.

EXERCISES

Draw diagrams to represcnt the geometric meaning of
each of the following statements.

1. y varies directly as the square of z.

2. y varies inversely as the square of z.

3. y varies as the cube of z.

4. y varies directly as x, and y=6 when z=2.

[HintT. The diagram here consists of a single line.]

6. y varies inversely as z, and y=6 when x=2.

6. The cost of n pounds of butter at 40¢ per pound is
c=40n.

7. The amount of the extension, e, of a stretched string
is proportional to the tension,t, and ¢e=2 in. when ¢=10 lb.
(See Ex. 11 (¢), p. 184.)

8. The pressure, p, of a gas on the walls of a.retaining
vessel varies inversely as the volume, v; and p=40 lb. per
square foot when v=10 cu. ft.

9. The length, L, of any object in centimeters is propor-
tional to its length, I, expressed in inches; and L=2.54
when [=1.






NEWTON
(Sir Isaac Newton, 1642-1727)

Discoverer of the law of gravitation and famous in algebra for his discov-
ery of the binomial theorem. Inventor of the branch of higher mathematics
called the Calculus, wherein rates of motion and other changing, or variable,
quantities are extensively studied.



CHAPTER XVIII
EXPONENTS

I. PosiTive INTEGRAL EXPONENTS

116. Powers. Involution. Justasa?=a-a;a*=a-a-a;
ete., so we define the nth power of a, where = is any posi-
tive integer, as follows:

a"=a-a-a-a-a--a (nfactors).

The process of finding the power of a number, or expression,
is called involution.

117. Laws of Exponents. There are five fundamental
laws of exponents which are as follows, it being understood
that m and n everywhere stand for positive integers :

I. MuvrripLicATioN Law. This law for multiplying two
powers of the same quantity is

a™ - a*=amt,
Proor.
a®"=a-a-a-a-a-- a (mfactors). (§ 116)
a*=a-a-a-a-a-- a (nfactors).

Hence
a”-a"={a-a-a-a- a(mfactors)}:-{a-a-a- a-- a(nfactors)}

=a-a-a-a--a (m+n) factors =am+tn, (§ 116)

Therefore

am™. ar= am+n.
ILLUSTRATIONS.
2. 28=201=925; (—3)3. (=3)7=(-3)10;
Z8. 18 =22, (a+b)?- (a+b)t=(a+b)"
o 193
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II. DivisioN Law. The law for dividing one power by
another power of the same quantity is
am+ar=agm,

Proor. am+cn=®" K- d-A-Ad---a-a-a--- a(mfactors)
a" 'SR O B ] (n fMtOl‘S)
=a-a-a-a-- a(m-—n)factors=a™ . (§116)

Therefore
am-+at=am"",
ILLUSTRATIONS.
30+31=302=34; (—2)5+(—2)"=(—2);
28 28 =23, (a+b)" +(a+b)*=(a+b)*

ITII. Law ror THE Power oF A Power. The law for
raising a power of a quantity to a new power is

(am)n =qmn,
Proor. (a™)*=a™- a™ - a™- a™--- a™ (n factors) (§ 116)
= gm¥mimimtecs +m (n terms), (Law I)

Therefore (a™)" =a™" since m+m-+m+ -+ +m to n terms =mn.
ILLUSTRATIONS.
(4)3 =473 =48; {(—2)%P=(-2)%;
()5 =2%; {(a+b)% = (a+b).
IV. Law ror THE Powkr oF A Propuct. The law for
raising to a power a product of two quantities is

(ab)*»=ab".

Proor.

(ab)® = (ab) - (ab) - (ab) --- (ab) (n factors) (§ 116)
={a-a-a-- a(nfactors)}-{b-b-b-b:- b (n factors)}
=anbn.

Therefore

(ab)™ =an"bn.

ILLUSTRATIONS.

(2X3)*=21X34;  {(=3)(—2)F=(-3)*(-2)};
(zy)® =2%y%; {(a+d)(c+d)} = (a+b)*(c+a)>
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EXPONENTS

V. Law FoR THE POWER OF A QUOTIENT.
raising to a power the quotient of two quantities is

g n aﬂ
) "5

Proor. ( ) g

Theref 9)"=a_
ererore (b b

-

i3

G

. 2\5 26 .
I . (Z) ==;
LLUSTRATIONS (3) 5

7_::7'
=7
y7

a-:
b

3 32

a-b

EXERCISES

(3) =57

- b (n factors)

(-

195

The law for

- a (n factors) _a",

) g) () (g) (n factors) (§ 116)

bn

Find the results of the indicated operations in the following
cases, using one (or more) of the five laws in § 117.

1

Noeo ke

22.
23.
24.
29.

30.

25 . 23, 8. % . ¢, 16. 1022,
(13- (=1)2 9. zr1.zH, 16. mi2+mS.
2)2- (%) 10. w™3 - wmH, 17. y5-+-y~
xw . zz. 11. gp+q—1 . g1+r. 18. qm___q4
mi% - ml3, 12. 8382 19. {2 =-te,
ys -y 13. (—3)5+(—3)3%. 20. zrtl=s-zr1,
qm - ¢t 14, (4)°=(4)". 21, wmH- ™,
guetrigitr, 26. {(—8)%}4.
(a+b)*r+(a+b)~1. 26. (xf)4 28. (mHe.
(25)3. 27. ().
(a%b)3.

[HinT ro Ex. 29. First use Law IV, then Law III.]
(x*y?)2.  32. (a?b®c) §(a+b)2(c+d)3}4.
(abc)®.  33. (mndw')®.  36. (x%P)2m.  36. (ris*)m.

31.
37.

GG

39.

()
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0 (Z)  a@ ) w(-m)
"\ ¥/ \¥*
2 __ 3 3 x 3 x2n
41. 2—9) . 43. (f) +(—). 46. (——)
(xz+y Yy v '
118. Roots. Evolution. Just as V@ means the number
whose square gives a, and Va means the number whose cube

gives a, etc., so we define the nth root of a, ¥a, to be the
number whose nth power gives a, that is we agree that
Va)=a. .

_Thus V71t =14, because (z4)3=z1. (§ 117, Law III.) Similarly
Va'oh® = a1b?, because (atd?)t = alths, _

Note. In case n=2, we write simply V_ instead of v .

The number 7 is called the index of the root.

The number under the sign V', as a, is called the radicand.

The process of finding the root of a number or expression
is called evolution.

119. Rule for Finding the nth Root of an Expression. The
nth root of an expression may be obtained readily in case the
expression itself is an exact nth power. This is illustrated
in the following examples.

ExampLe 1. To find the value of Vmn?.

SoruTioN. The expression m®n® may be written as an exaet
cube, namely (m’n’)’ (Laws IV and III of § 117.)

Therefore Vm®nd = v (m™n?) =m?nd. Ans. (§ 118)
ExampLE 2. To find the value of ] Caad M

z18

SoLuTioN. The expression ”%’:—s may be written as an exact 5th

power, namely (x_;y) ’, (Laws IV and III of § 117.)

505 6
Therefore \/x:s ° ='\’(I—:g) ’ =-'€_:8y, Ans. (§ 118)
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Observe that the answer to Example 1 (namely m?n®) is
the result of simply dividing each exponent of the radicand
(namely m®n?) by the index of the desired root (namely 3).
Similarly, in Ex. 2 if we simply divide each exponent in

2105 . . . .
—;;% by 5 we get the answer immediately. Thus, in practice,

we use the following rule.
To find the nth root of an exact nth power, divide the expo-
nent of each factor of the radicand by n.

Thus

Vg o g 3Py, [@ED =) _(a+b)(e—d)
’ 2 2’ z8y8 z4y8

Note. It will be recalled (§ 39) that, unless otherwise stated,
the symbol Va means the positive number whose square is a. Thus
V9 =43, the other root, —3, being represented by — V9. This
agreement is made in order to bring about perfect definiteness in the
use of the symbol V.

EXERCISES
Determine (from the definition in § 118) the value of :
1. V8. 4. V3245 y \a/ﬂ _
2. V2. 5. V625. T V64t
3. — V8l 6. Vi 8. VmPnigH,
Determine by means of the Rule in § 119 the value of :
9. Vmdno. 10. V64 ab®. [HinT. Write 2¢ for 64.]
11. V625 a®bt. 17. 324°, 23, /oy,
12. V=27 m*b. 2! (81 zim
13 —VEIZPE. g S N g
14. — /=33 70, T’ 95, <|7".
19. —Va?m, * Noor
15. \/E % _y—
Yt 2. V(=a™ 45 VZarb).
6. {7 o oVen o V@R

" Ngr 22. V(—a)m,
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II. FracTioNAL, ZERO, AND NEGATIVE EXPONENTS

120. Introduction of General Exponents. Thus far we
have considered only positive integral exponents. Such
symbols as a** and a2 thus have no meaning for us as yet
since there can be no such thing as taking a as a factor three
fourths times, or minus two times. However, we shall now see
that by extending our definitions we can assign perfectly
definite meanings to these symbols as well as to all others
wherein fractional, zero, or negative exponents occur.

121. Meaning of a Fractional Exponent. If a** is to
obey the multiplication law (§ 117) then
a3/4 . a3/4 . a3/4 . a3/4=a3/4+3/4+3/4+3/4=a12/4=al.
That is
(a&'l){ -— a3,
so that we must have
a¥/t=Vas.

Thus we naturally take Va® to be the meaning of a¥/4,
Similarly (if the multiplication law is to hold true), the
meaning of a?® is V/a?, while that of a¥® is Va4, etc.
So, in all cases a™™ means the nth root of a™, that is,
am/"=~/am.

Thus N -
81 =V =V 64=4.
Similarly,
(xByt)¥/4 = v (z8yt)3 = sz‘yl’ =z%3. (See Rulein §119.)
EXERCISES
Express with radical sign and find the value of :
1. 8v3, 6. 27%/3, 11, (yO)Vs,
2. 412, 7. 325, 12. (y)¥s,
3. 9u2, 8. 8184, 13. (z%5)%/s.
4. 2718, 9. 641/5, 14. (16 xPy18z4)V/2,
6. (—8)vs. 10. (z8)Vvs, 15. {(a+b)3}%s.
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_ Express with radical signs:
16. 23, 18. 4%2, 20. (a?)¥3. 22. 2213, 24. m?/3n¥/14,
17. 3¢5, 19. a¥3. 21. (32)¥4. 23. (2ab)¥4. 26. (z+y)%.

Express with fractional exponents:
26. Vai. 29, 2ViS, 32. 3Vl 36. V(a+Db)
27. Vzb.  30. V(—a). 33. V(3n):. 36. V(atb).
28. Vab.  31. Viabe. 34. aVas.  37. Var(m—n).

122. Meaning of a Zero Exponent. If a° is to obey the:
multiplication law (§ 117), then a™-a’=a™t%, that is
a™ -a’=am™ Dividing both members of the last equality
by a™ gives a®=a™+a™=1. That is,

a®=1.

This means that the zero power of any number a (except 0)
must always be taken equal to 1.

Thus 3°=1; (—32)°=1;(})=1;20=1; (mn)°=1; (a+b)° =1;.
ete.

123. Meaning of Negative Exponents. If a=™ is to obey
the multiplication law (§ 117), then @™ a™=a™"=d’,
that is a™ - a=™=1 (§ 122). Dividing both members of the:
last equation by a™ gives

This means that a negative power of any number a must al--
ways be taken equal to 1 divided by the corresponding positive.
power of a.
-1l 1. gy
Thus 2 -8 (—4)

Similarly, (a+b)"V2=

1. gan_ 1 _1
(—4) 16’ z g
1 _ 1
(a4+b)'? vaFb
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EXERCISES

Express with positive exponents and find the values of
each of the following expressions.

1.3 b.271-372 9. 8 .47, 13. 8114,
2. 4% 6. 4.3 10. 87173, 14. 64718,
3.2 T.T7-44 11. (—8)V3,  16. (—125)7178,
4. 8. 8 2°.8.4% 12 2773, 16. (—32)-/s,

Write with positive exponents each of the following ex-
pressions.

17, 2y 20. (2 a)~b". 23, 6-imn",
18. T3, 21 2%, 24. (athe)2.
19. 2 a3, 22. (—m)3(—n)2. 26. {a*(m—n)}—.

124. Negative Exponents in Fractions. This is best
understood from an example.

—4
ExXAMPLE. Writea?_zE with positive exponents only.

1.4 .
—4p3  at 3
SoLUTION. “—c_,i=£“_L_=g+%=% . %J%“i Ans.  (§123)
c

It is to be observed that the answer here results directly
by transferring the factor a~ to the denominator by changing
the sign of its exponent, and transferring the factor ¢ to
the numerator by likewise changing the sign of its exponent.

Thus we have the following important principle.

A factor may be transferred from either term (numerator
or denominator) of a fraction to the other provided the sign of
its exponent be changed.

Thus we may write %=%

Similarly, 4—‘;3%0;24 a*b3c2d‘¢5. Here we have written the

fraction in a form having no denominator, that is as a product.
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EXERCISES

Write each of the following expressions with positive
exponents only.

1 £ . (g Z;z T

2. 227 5. 8;”;24; 8. 5_%:%:,
v 7

3 2. g 20702 g. Slatb)yct
2y " 3ot " T2(ctd)e

Change each of the following expressions to the form of a
product.

z? 2 a®h? 8 a??*¢ 6h342
10- ;3' 12. —CT/‘-' 14- d—ze—z . 16. WL'
@, 3rs™ 4a*, 3(atb)2
5 18 oo 16 oo 1. G T

126. The Fundamental Laws for Any Rational Exponent.
The five fundamental laws stated in § 117 were there proved
true only for positive integral exponents, but it can be shown
that they hold equally well for fractional, zero, or negative
exponents. As the proof of this fact is long, it will be
omitted from this text. The following illustrations of the
meaning of the laws in such cases should, however, be care-
fully examined.

1. a® a3 - a¥/3 . g3 =gt3H/s+2/3 =g 42 =05 (Law I)

2. B0 goit—) = o/ = ¥ = g, (Law IT)
3. (@ ¥2)W/5=q(-¥/D) - /5=g8/s, (Law III)
4, (@) VA=g O . A = g¥4b2, (Law IV)
5. (“ 0D 6t e, (Law V)

3 bD bt
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HistoricaL NoTe. The idea of using exponents to mark the
power to which a quantity is raised is due to the French mathe-
matician and philosopher Descartes (1596-1650) ; see the picture fac-
ing p. 41), but he used only positive integral exponents, as in a!,
a?, a3, a4, ---. The English mathematician Wallis (1616—-1703) en-
couraged the use of fractional and negative exponents and caused
them to be brought into general use.

EXERCISES

In the following exercises, assume that the laws of § 117
hold true for all rational exponents.

Law I
Multiply
1. a*bya. 8. aV%'? by a'/2*/3.
2. a*bya? 9. ml/2nl/3 by m3/2n2/3,
3. a@® by a3 10. pV/4 q by 4 p¥4,
4. abya. 11, »? by bn=3.
6. a?bya. 12. z™n by zmin,
6. a3 by a?/5. 13. z(mn/z by gimm/z,
7. x—l/2 by x3/2. 14. al/2+bl/2 by al/2bl/2.

16. a?/34aV/3pV3 b3 by g3 —p1s3,
[HinT. Follow the rule for multiplying one polynomial by
another, as given in § 8.]

16. ml/3+m1/6n1/0+n1/3 by ml/a_m1/6n1/6+nl/3.

Carry out the following indicated operations.

17. (a1/2+b1/2) (allz_bllz). 20. (A1/4+5) (A1/4_3).
18. (x2/3+y2/3) (x2/3_' 2/3). 21. (m—l/2_3) (m—l/2_2)'
19. (al/2+bl/2)2_ 22. (xl/Z — y—l)Z.

23. (23— gM/3yL/3 4 42/3) (g3 4 y1/3),

24_ (I2/5 —_ xl/ By—l/ 5+y—2/ 5) (x1/5+y—1/5).

26. (2 x2/3—3 x1/34-4)(2+3 z~V3),

26. (—2y+2y)(2 2242y +y%).
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Law 1I
Divide
27. a*bya®. 29. 2?by 2% 31. (mn)*? by (mn)*3,
28. a®by a®. 80. z¥2by z V2. 32 zVy2by y /2,
33. +2%2+yt by 2%

SOLUTION. zix:w =-f_‘ +“.f.y.2 +.ﬂ. =x_2+l +.lz. Ans.
T3y Tyt ar g 2

34. a’+4a?+a by at.

36. a*+a%+b® by a%.

36. z+2 ax®*+5 2 ly—ay 3ty by 2y 2
37. a—b by aV/2+b'2,

SoLuTION. a —b|a24b12
a +al/2h1/2 al/2 —pr/2,  Ans.

—al/2b112 _b

—a'/th/2 —p
88. a—b by aV2-p12, 41. z—1 by z¥3+z'/341.
39. a+b by al/3-4b'/3, 42. z—y by zV4—y'/A,
40. w2+y? by z*/344%/3, 43. m?*—n? by m'/3+4nl’2,

Law III

Simplify

4. (a2,

SoLuTioN. As in Illustration 3 of § 125, the answer is a!/2x3,
or a¥2,

46. (aV2)2. 46. (z1/3)0. 47. (z9)2 48.7(8V/%)2. 49, (1671/2)3,
80. Va?. [Hir. VaT=(a*)/ by §121]
51 Ve, 62. V¥
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Laws IV anD V
Simplify
63. (ab*/3)~1/2,
SorLuTioN. As in Illustration 4 of § 125, we have (a—4b*/3)~1/2 =
a(—l)(—l/2) . b’/l(—ll!) =a!b—l/3. Aﬂs.

64. (al/%b112)8, 68. (3 2°)',
665. (xusy-a)—x/a_ 59. (%_ m—ln—lm)l/z.
56. Va2, 60. V4 oy,
67. Vzily, 61. Vab.

1/ \2
62. (W) -

[HinT to Ex. 62. See Illustration 5 in § 125.]

gm3nt - \/xz"me
63. . 64. .
q2 2uybr

* MISCELLAREOUS EXERCISES
Expand, by use of Formulas VI and VII of § 10.

1. (zV2—yir)p, 3. (a'34bi3),
2. (al+b)e 4. (1+22172)
Simplify, expressing results with positive exponents.
5 V2 z\™ . . ®
" \V3y 8. VmngiX Vmnig.
. \’/(?X\/ﬁ . ntizn . z \n1
Tx Ve e (B
7 Vi@
Ny 10. V V{162,

Solve forz and check each result in the following equations.
11. 23/4=8. [Hint. Write z3/4in the form (z!/4)3.]

12, 2¥5=9. 14. 1 2¥/2=72. 16. 25 x%3=1,
13. z*/3=186. 16. }x*3=25. 17. z3%2-27=0.



CHAPTER XIX
RADICALS

126. Important Formulas. In § 3 we defined Va as mean-
ing that number or expression which, when raised to the nth
power, would give a; that is

1) (Va) =a.
Unless a is an exact nth power of some number or expres-
sion, we agreed (§ 41) to call Va a radical of the nth order.

Thus V5, V23, ‘/3;-. V.05, Vz +y, V'm?+n? are radicals of the
second order; V5, V7, V3 Vz+y are radicals of the third order,
ete.

Moreover, we saw (§ 44) that there exist two general
formulas as follows :

) Vab=+Va - Vb,
sa_Va
3) ' b b

And, in connection with the study of fractional exponents,
we have seen (§ 121) that the meaning of a'/* must be taken
to be Va, that is we have the formula

4) a'"=Va.

The four formulas (1), (2), (3), (4) contain all that is
essential in the study of radicals. In fact, we have already
seen in Chapter IX how (1), (2), and (3) are thus used. In
the present chapter we shall review and extend those studies,
making use now of (4) also.

205
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127. Simplification of Radicals.
ExampLe 1. Simplify V'75.
SoLUTION. V75=V25X3=V25XV3=5Vv3. Anas.

(Formula (2), § 126)
6
ExampLe 2. Simplify \‘/64; o,

SoLuTiON. +[64a% _ V64 4% _ V16 't X V4 a'bd

o VE . VexVe
_2abVEGE, 4,
zVz
EXERCISES

Before undertaking the following exercises, review § 44, including
the note on page 72. These resemble the exercises on pages 73, 74,
but in some instances are more difficult because they refer to radicals
of as high orders as the fifth, sixth, and seventh.

Simplify each of the following expressions.

1. V52. 5. V4. 9. V64. 18. V64.
2. V80. . V72. 10. V243.  14. V/486.

6
3. V72. 7. V102 11. V1250. 16. V128.
4. V5. 8. Vs 12. V3. 16. V/256.

17. v99 q2. 20. V128 mn®. 23. V64 m'nb.
18. V60 2% . 21. V108 ris’te. 24. V128 2%,
19. V75 pigir. 22. V64 a0, 26. /128 méniq.
26. V(a2—b?)(a—b). (a—b)Va+b. Ans.

27. V(z2—4 1) (x+2y).

28. V4a0*+8 a'b’+4a%t.  [HiNT. See Notein § 45.]

f3 V3 \3/ 4 2 4z
29. Jé' —2—' Ans. 32. 125'!/3' 36. 3276'

3/40 {5a o323
30. \/=o- VLN i \/—-
81 B VNigw 38 Vaag
2 8 7 7 7m14 4
31 A-2—. 34. g . 37. \/———-
Nor o 81 ks 128 29y
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EXERCISES
Write each of the following in a form having no coefficient
outside the radical sign. First review the similar exercises
on page 74.

1. 3V2.

SoLuTioN. 3V2=V2TXV2=V2TX2="V54. Ans.

2. 2V73. 7. 4aV2a. 12. (z+y)Vz—y.
3. 2V2. 8. 622V5 2, 1'3 2z 5y

4. 3V3. 9. 2abV5a2. ERPY

6. 2V7. 10. mV2n. 14, 22959,

6. 3V6. 11. 22Vzy. 3 Y2z

128. Reduction of Radicals of Different Orders to Equiva-
lent Radicals of the Same Order.

ExampLe. Reduce V2, V3, and V5 to equivalent radi-
cals of the same order.

SorutioN. By use of Formula (4), § 126, and the laws of expo-
nents (§ 117) we may write

V3 =912 =96n2 = Y/36 = '\’/_64’
V3 =313 =312 = ¥/31 = V3I,
VB =514 = 5312 = V57 = V/125.

NoTeE. As now expressed, the given radicals may be compared
as to their magnitudes. Thus we see V5 is the greatest of the
three since (the orders of the radicals being now the same) it has the
largest radicand, namely, 125.

An examination of the process just followed leads to the
following rule.

To reduce radicals to equivalent radicals of the same order:

1. Express the radicals with fractional exponents.

2. Reduce the exponents to a common denominator.

3. Rewrite the results thus obtained in radical form.



208 SECOND COURSE IN ALGEBRA [XIX, §128

EXERCISES

Reduce each of the following groups to equivalent radicals
of the same order.

1. V3and V4. 3. V3and V5.

2. V2 and V3. 4. V5, V6, and V7.
6. Va and Vb. Va?® and V2. Ans.

6. V2zand V3z.

7. Vy, Vyz, and Vzz.

8. Vi—z, Vi+z.

9. V(a+b), V(a+b) V(a+b)
10

G

Arrange the following in order of magnitude. (See § 128.)

11. V3, V4. 14. V4, V13.
12. V2, V3. 16. V2, V4, V6.
13. V10, V5. 16. V13, V7, V174.

129. Multiplication of Radicals. We have already seen
in § 46 how to multiply two or more radicals of the second
order. Radicals of higher order than the second may be
multiplied by means of the general formula (2) of § 126.

ExampLE 1. V4 - VI0=V40. (Formula(2),§126.) Sim-
plifying (§ 127), V40=2V5. Ans.

ExaMPLE 2. Viz - V22i=V(dz)’ V(2 17)?

=v([@z)*- (22°%. (Formula (2), § 126)

But

VPR =V -2 3 =V .2 .o
=V(27) (4z)=22V4zr. Ans.

Note that in Ex. 2 the given radicals are of different orders,

in which case the first step is to reduce them to equivalent radicals
of the same order (§ 128). Then apply (2) of § 126.
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In general, we have the following rule.

To multiply radicals of any orders:

1. Reduce the radicals, if necessary, to equivalent radicals
of the same order (§ 128).

2. Multiply the resulting radicals by use of Formula (2),
§ 126.

3. Simplify the result as in §§ 44 and 127.

EXERCISES
[Compare with the exercises on page 76.]
Find each of the following indicated products.

1. V9.3, 9. V2.V4.
2. V6 V4. 10. V2. V8.
3. 2V1I8 - V3. 11. V10 - V4.
4. 2V4.V12. 12. Vz - Va.
6. 3V24 - V4. 13. Vy - Vi
6. Voz2.V3a2 14. V. Vy.
7. 2V6 - V8 16. V2 .V3.V4.
8. 5Vl . Vb, 16. Vs - Vzlyz.

130. . Division of Radicals. We have already seen in § 47
how one radical of the second order may be divided by another
of that order. If the radicals are of higher order than the
second, we may divide them by means of the general formula
(3) of § 126.

ExampLE 1. Divide V16 by V'12.

3 8
Souumion. i_gf i—g=\’/§_- (Formula (3), § 126)

The simplest and most desirable form in which to leave this
result is that in which no fraction appears except outside the

sign. Thus
-V4 8 4 X 32 e 36 _1 3/36 Ans
3 33 \:/_335 3 ) ’
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ExampLe 2. Divide V3 by V9.

SoLUTION. ‘/— —,‘/—é—s \/27 Il (Formula (3), § 126)
b
But \/’-—-{/E-ﬁi"’_l\/w Ans,

ExampiE 3. Divide V3zy by V3248,

v3zy — V@3 zy)? _ ‘/9 2292 _
SoLuTION. ‘/m‘ V31 x’y’ by J_ .

3_° “ )
But '\/ V—yy,— ‘/—‘ \/3 ys. Ans.
In general, we have the following rule.
To divide one radical by another : -

1. Reduce the radicals, if necessary, to equivalent radicals
of the same order (§ 128).

2. Divide the resulting radicals by use of Formula (3) (§ 126).

3. Simplify the result in such a way that no fraction appears
except outside the radical sign.

EXERCISES
[Compare with the exercises on page 77.]
Find each of the following indicated quotients.
1. V7+V2., 4 2+V2, . VI22+ V22
2. V7+V2. 5. 3+V3. 8. V8lay+V9zy.
3. VI+V2. 6 Vi:VZI 9 V8m+V32m.

10. Vazr+Vazy. 13. 3V75+5V28.
11. V2 mnd+Vmini, 14. V16+V32.

12. Vaizi+V?2az. 16. Va—b+Va+b.
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131. Involution and Evolution of Radicals. By use of
Formula (4) of § 126 together with the general laws of expo-
nents (§ 117), we may raise a radical to a power or extract
a root of it.

Exampie 1. Find the square of V8.

SoLuTioN. (VB)r= (8142 =84 =82=VE=2V2, Ans.
Examere 2. Find the fourth root of V2 z.
SoLUTION. V72_'—x= [(2 z)2 /4= (2 x/8= V2z. Ans.

EXERCISES
Perform each of the following indicated involutions.
1. (V3 6. (2V3)s. 11. (V2)
2. (V8) 7. (3V2). 12. (3V2):.
3. 3V 8. (2Vdd)3. 13. (2V2zy)t

4 (2V3) 9. (Vimmds. 14. (—V2Vapp)
6. (z2V4y)2 10. (VI 16. (VzVy)s.

Perform each of the following indicated evolutions.

16. VV3. 20. VVaE, 2¢. V24,
17. V5. 21. VV8Iimms. 25; VVTab
18. V7 22. V'V, 26. V3.
19. VV19. a3 Vs, 27. V2.

132. Rationalizing the Denominator of a Fraction. If the
denominator of a fraction consists of a single quadratic radi-
cal, or is a binomial containing quadratic radicals, the frac-
tion may be changed into one which has radicals only in its
numerator. The process of doing this is called rationalizing
the denominator.
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ExampLE 1. Rationalize the denominator in the fraction

V3

V5

SovLutioN. Here the denominator contains the single surd V.
To rationalize this denominator it is merely necessary to multiply
both numerator and denominator by V5, giving V15/5. Ans.

ExampLE 2. Rationalize the denominator in the fraction
1
V3+V2
SovuTioN. Multiply both numerator and denominator by
V3 - V2, giving
v3-Vv2 - __ V3-Vv2 _V3-vV2_+V3-V3
(V3-V2)(V3+V2) (V3p—(v2yr 3-2 1
=V3 —~V2. Ans.
ExampLE 3. Rationalize the denominator in the fraction
3V5+2v2,
V5—-v2
SoruTioN. Multiplying both numerator and denominator by
V54 V2, we have
(8V54+2V2)(VE+V?) _3-54+3VI0+2VI0+2.2
(V532 —(V2) 5-2
LSV,

We may then state the following rule.

To rationalize the denominator of a fraction :

If the denominator contains a single radical, multiply both
numerator and denominator by that radical.

If the denominator has either of the binomial forms Va+V'b
or Va—+'b, multiply both numerator and denominator by
Va—Vb, or Va++Vb according as we have the first or second
of these two cases.
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EXERCISES

Rationalize the denominators in each of the following
fractions.

L V2, 5. V3+Vv2 g 3V3—2VZ
V5 : V3—V2 2Vv343V2
V8 1 3+V6

2. —. 6. . 10. 2+ X2,
V10 Vv3-1 P
vVa 7. 2 2vVa—-3Vvbh

3 —. . = 11, £ Y9927 7,
v Vi-v2 3vVa—2vh

. Vim 8. 2=VT 19, Yat2t2

. : 24+V7 Y A
V3 bz Vz+2+1

133. Finding the Value of Fractions Containing Radicals.
Suppose we wish to find the value of

1

V3+v2
correct to five places of decimals. It is well to begin by
rationalizing the denominator, thus making the fraction take
the form (see Ex. 2 worked in § 132) V3—+v2. All we now
need to do is to look up in the table the values of V3 and V2
80 as to work out the value of V3—+v2. That is, we have
— 1 V3B_V/3=173205+—141421+=031784*. Ans.
V3+Vv2
If, in this example, we had not first rationalized the denomi-
nator, we should have had to find the value of
1 or ————,
1.73205++1.41421+ 3.14626%+

which would compel us to divide 1 by 3.14626. Note how
much more difficult this is than the above, where virtually
all we need to do is to subtract 1.41421 from 1.73205.
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auatrates the genersl fact that fo find the value of a
s denominator i it contains radicals) should first
senulized whenever possible.
EXERCISES

I'nul (by first rationalizing the denominator and then using
I tuble) the approximate values of the following fractions.

2 1 1

1 - 3. ———. 5. ——
V3 V3—V2 V25

g 2V7. g 1H+V3B 6. 2V5—4
3v5 2-V3 3V3-2

*184. Binomial Surd. A binomial, one or both of whose terms
uro surds (§ 42), is called a binomial surd.

Thus 2+ V3, V2+ V35, V3—1 are binomial surds.

*185. To Find the Square Root of a Binomial Surd. The famil-
iur formula for (a +b)? (§ 10, Formula VI) may be put into the form
H . a?+b*+2 ab = (a+b).

Since this relation holds true for any values of a and b, let us sup-
pose in particular that both are positive, in which case we may
write ¢ = Vz and b = V'y, where z and y are properly chosen positive
values. The equation just written then takes the form

z+y+2Vzy=(Vz+Vy)
Extracting the square root of both members now gives
@) Vie+n) +2Vay=vi+vy.
This formula, having been thus derived from (1), must therefore
hold true for any positive values of = and y.

Similarly, by starting with the familiar formula for (a —b)2, we
arrive at the formula

®) Vi(z+y)—2Vay=Vz—Vy.

Formulas (2) and (3) are frequently used to obtain the square
root of a binomial surd (§ 134) as illustrated in the following
example.
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Exampre. Find the square root of the binomial surd 11 +4V7.

SoLuTioN. We are to find V11 +4V7.

This may be written Vi1 +2V28, and it is now in the form of the
first member of Formula (2), provided we choose z and y so that
z+y=11while zy =28.

The values of z and y which satisfy these last two equations are
seen (by inspection) to be z =4, y =7.

Substituting these values of z and y in the second member of
(2) gives VA+VT7=24+V7.

Therefore \/11 +4VT7=24+V7. Ans.
CHECK.
@CH+VTr=2242-2. VT4 (VT2 =4+4VT+7T=1144VT.

The pupil will observe that all that is essential in working the
above example is to write the given surd term (4V7) so that it has
the coefficient 2 instead of 4. Similarly, all such problems may be
brought under Formulas (2) or (3) as soon as the coefficient of the
surd term has been reduced to 2.

* EXERCISES

Find the square root of each of the following expressions, and
check your answer.

1. 64+2V8.
[Hint. Herexz+y=6, zy=8.]

2. 6-2V8. 4. 11-2V30. 6. 6+4+V32. 8. 8+4V3.
8. 7+4V3. 5. 6—Vv20. . 7. 7—-V40. 9. 20—6V1I.

10. Establish Formula (3) of § 135 by a process similar to that
used in establishing Formula (2).



CHAPTER XX
LOGARITHMS

I. GENERAL CONSIDERATIONS

136. Definition of Logarithms. If we ask what power
of 10 must be used to give a result of 100, the answer is 2
because 102=100. Another common way of stating this is
to say that ‘‘ the logarithm of 100 is 2.” In the same way,
the power of 10 needed to give 1000 is 3 because 10®= 1000,
and this is briefly stated by saying that ¢ the logarithm of
1000 is 3.”” Similarly, the power of 10 that gives .1 is —1
because 101=y, or .1 (§ 123), and this is equivalent to
saying that  the logarithm of .1is —1.” Likewise, the loga-
rithm of .01 is —2. Why?

From these illustrations we readily see what is meant by
the logarithm of a number. It may be defined as follows:

The logarithm of a number ts the power of 10 required to
give that number.

Note. A more general definition will be given in § 151, but this
is the one commonly used in practice.

The fact that the logarithm of 100 is 2 is written log 100=2.
Similarly, we have log 1000=3,log .1=—1, log .01 = —2, etc.

t Parts I and II give definitions and essential theorems which
should be well understood before Part III, which deseribes the im-
portant applications, is taken up.

216
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EXERCISES

1. What is the meaning of log 100007 What is its
value ?

2. What is the value of log .001? Why?

3. What is the value of log .00001? Why?

4. What is the value of log 10?

6. What is the value of log 1? (See § 122.)

6. As a number increases from 100 to 1000 how does its
logarithm change?

7. As a number decreases from .1 to .01 how does its
logarithm change? Answer the same as the number goes
from .01 to .001 ; from 1 to 10; from 1 to 1000.

8. Explain why the following are true statements:

(a) log 100000=5. (b) log .0001=—4.

(c) log V10=3}.

[Hint. Remember V10 =102,

(d) log V10=%.

(e) log V'100=2.

[Hinr. Remember VI00 = VI0*=10*s. (§ 121.)]

() log Vi=—4.

137. Logarithm of Any Number. Suppose we ask what
the value is of log 236. What we are asking for (see defini-
tion in § 136) is that value which, when used as an exponent
to 10, will give 236; that is we wish the value of z which
will satisfy the equation 10°=236. This question resembles
those in § 136, but is different because we cannot immediately
arrive at the desired value of z by mere inspection. All we
can say here at the beginning is that z must lie somewhere
between 2 and 3, because 10*=100 and 10°=1000, and 236
lies between these two numbers. In order to find z to a finer
degree of accuracy, it is now natural to try for it such values
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as 2.1, 2.2, 2.3, 24, 2.5, 2.6, 2.7, 2.8, and 2.9, all of which lie
between 2 and 3. The result (which for brevity we shall
here state without proof) is that when z=2.3 the value of 10~
is slightly less than our given number 236, while if we take
z= 2.4 the value of 10~ is slightly greater than 236. Thus
lies somewhere between 2.3 and 2.4. In other words, the
value of log 236 correct to the first dectmal place (compare
§37) is 2.3.

It is now natural, if we wish to obtain z to still greater
accuracy, to try for it such values as 2.31, 2.32, 2.33, 2.34,
2.35, 2.36, 2.37, 2.38, and 2.39, all of which lie between 2.3
and 2.4. The result (which again is here stated without
proof) is that when £=2.37 the value of 10 is slightly less
than our number 236, while if we take £=2.38 the value of
107 is slightly greater than 236. This means that the second
figure of the decimal is 7, after which we may say that the
value of log 236 correct to two places of decimals is 2.37.

Proceeding farther in the same manner, it can be shown
that when £=2.372 the value of 10 is slightly less than 236,
while for z=2.373 the value of 10~ is slightly greater than 236.
Thus the value of log 236 correct to three places of decimals is
2.372. Similarly, it can be shown that the number in the
fourth decimal place is 9, and this is as far as it is necessary
to carry out the process, since the result is then sufficiently
accurate for all ordinary purposes.

In summary, then, we have log 236=2.3729, this value
being correct to four places of decimals.

Note. It thus appears that logarithms do not in general come
out ezact, though they do so for such exceptional numbers as
100, 1000, 10,000, .1, .01, ete. (Compare § 37.) They can be ex-
pressed only approximately, yet as accurately as one pleases by
carrying out the decimal far enough. In this respect they resemble
such numbers as V2, V2, V3, ete.
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Other examples of logarithms are given below. Note
especially the decimal part of each, which is correct to four
places.

log 283 =2.4518 log 196 =2.2923 log 17=1.2304
log 6=0.7782 log 3.410=0.5328 log 5.75=0.7597

138. Characteristic. Mantissa. We have seen that the
logarithm of a number consists (in general) of an integral
part and a decimal part.

Thus log 236 =2.3729. Here the integral part is 2 and the deci-
mal part is .3729. Similarly, in log 6 =0.7782 the integral part is 0,
while the decimal part is .7782.

These two parts of every logarithm are given special names
as follows :

The integral part of a logarithm is called the characteristic
of the logarithm.

The decimal part of a logarithm ts called the mantissa of
the logarithm.

Thus the characteristic of log 236 is 2, while its mantissa is

.3729. (See above.) Similarly, the charaecteristic of log 6 is 0, while
its mantissa is .7782.

EXERCISES

1. What is the characteristic of log 100? What the
mantissa? Answer the same questions for log 1000, log 10,
and log 1.

2. What is the characteristic of log 156 ?

[HinT. Note that 156 lies between 102 and 103.]

8. What is the characteristic of log 276? of log 1376? of
log 97?7 of log 18? of log 57 of log 11? of log 147987

4. For what kind of number can one tell by inspection
both the characteristic and the mantissa of its logarithm?
(See § 136.)
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139. Further Study of Characteristic and Mantissa. We
have seen (§ 138) that log 236 =2.3729, which is the same as
saying that
1) 1025728 =236.

Let us now multiply both members of (1) by 10. The
left side becomes 102+l or 10%¥® (§ 117, Law I) while
the right side becomes 2360. That is, we have 10%-¥™=
2360, which is the same as saying that

log 2360=3.3729

If, instead of multiplying both sides of (1) by 10, we divide
both by 10, we obtain in like manner 1023-1=23.6 (§ 117,
Law II). That is, we have 10-¥2 = 23.6, which is the same
as saying that

log 23.6=1.3729

Finally, if we divide both sides of (1) by 102, or 100, we
obtain 10>¥%-2=2.36. That is, we have 100¥2 =236 which
is the same as saying that

log 2.36=0.3729

What we now wish to do is to compare the results which we
have just been obtaining, and for this purpose they are ar-
ranged side by side in a column below.

log 2360=3.3729
log 236=2.3729
@ log 23.6=1.3729
log 2.36=0.3729

Note that the mantissas here appearing on the right are
all the same, namely .3729, while the numbers appearing
on the left (that is, 2360, 236, 23.6, and 2.36) are alike except
for the position of the decimal point, that is they contain
the same significant figures. This illustrates the following
important rule.
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Ruie 1. If two or more numbers have the same significant
Sfigures (that 1s, differ only in the location of the decimal point),
theiwr logarithms will have the same mantissas, that is their
logarithms can differ only in their characteristics.

Thus log 243, log 2430, log 24.3, log 2.43, log .243, and log .0243

all have the same mantissas. It is only their characteristics that
can be different.

EXERCISES

Apply Rule I, § 139, to tell which of the following loga-
rithms have the same mantissas.

log .167 log 8100 log 16.7 log 81 log .0072
log .081  log 7.2 log 720 log 1670  log 16700

II. To DETERMINE THE LOGARITEM OF ANY NUMBER

140. Purpose of This Part. When we wish to determine
the value of a logarithm, as, for example, to find log 236, we
can work out the characteristic and mantissa as explained
in § 137, but this requires considerable time. What we do
in practice is to use certain simple rules for determining the
characteristic, and we determine the mantissa directly from
certain tables which have been carefully prepared for the
purpose. We shall now state these rules (§§ 141-143)
and explain the tables and how to use them (§§ 144-146).

141. Characteristics for Numbers Greater than1. If we
look again at the results in (2) of § 139, we see that the
characteristic of log 2360 is 3. Thus the characteristic is 1
less than the number of figures to the left of the decimal
point.

NoTe. 2360 is the same as 2360., so that there are four figures
here to the left of the decimal point.
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Again, we see from (2) of § 139 that the characteristic of
log 236 is 2 and this, as in the case already examined, is 1 less
than the number of figures to the left of the decimal point.

Note. 236 is the same as 236., so there are three figures here to
the left of the decimal point.

Similarly, since the characteristic of log 23.6 is 1 (see (2)
of § 139) this again obeys the same law as just observed in
the other two cases, that is, the characteristic is 1 less than the
number of figures to the left of the decimal point.

Finally, since the characteristic of log 2.36 is 0, the same
law is again present here. Explain.

The law which we have just observed can be shown in like
manner to hold good for the characteristic of the loga-
rithm of any number greater than 1; hence we may state
the following general rule.

RuLg II. The characteristic of the logarithm of a number
greater than 1 is one less than the number of figures to the left’
of the dectmal point.

Thus the characteristic of log 385.9 is 2; that of log 8.679 is 0.

EXERCISES

State, by Rule IT, § 141, the characteristic of the logarithm
of each of the following numbers.

1. 476.5 : 5. 89.65 9. 500.005
2. 325. 6. 105,000. 10. 3076.8
3. 8976. 7. 17.694 11. 41.

4. 16 8. 2.0815 12. 3.25679

State how many figures precede the decimal point of a
number if the characteristic of its logarithm is

13. 3. 14. 2. 16. 0. 16. 1. 17. 4. 18. 5.
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14?2. Characteristics for Positive Numbers Less Than 1.
We have seen (see (2) in § 139) that log 2.36 =0.3729, which
is the same as saying that
1) 100479 = 2,36

Let us now divide both members of this relation by 10.
We thus obtain (§ 117, Law II)

100-52-1= 236 (or 10~110-379 = 236),
which gives us (by § 136)
log .236=—1-+0.3729

Observe that —1+0.3729 is really a negative quantity, being
equal to — (1 —0.3729) which reduces to —0.6271. However, it is
more convenient for our present purposes to keep the longer form
—140.3729. Note that this cannot be written as —1.3729 be-
cause this last is equal to —1 —0.3729 instead of ~1+40.3729.

If, instead of dividing both members of (1) by 10, we
divide both by 102, or 100, we obtain

100¥-2= (0236 (or 10~2+0-37% = (236),
which means that
log .0236= —24-0.3729

Similarly, by dividing (1) by 103, or 1000, we find that

log .00236= —3+0.3729

Finally, if we divide (1) by 104 or 10000, we find that

log .000236 = —4-10.3729

Let us now compare the four results just obtained. Be-
ginning with the last result, we see that in the number
.000236 there are three zeros immediately to the right of the
decimal point, that is, between the decimal point and the
first significant figure. Corresponding to this, the charac-
teristic on the right is minus four. Hence the characteristic
is negative and 1 more numerically than the number of zeros
between the decimal point and the first significant figure.
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This illustrates the general fact that to find the value of a
fraction, its denominator (if it contains radicals) should first
be rationalized whenever possible.

EXERCISES

Find (by first rationalizing the denominator and then using
the table) the approximate values of the following fractions.

L2 1 1

1, —. 3 —. b ——.
V3 V3—-V2 V250
VT, 14V3 g 2V5-4

" 3V 2—V3 3v3-2

*134. Binomial Surd. A binomial, one or both of whose terms
are surds (§ 42), is called a binomial surd.

Thus 2+ V5, V24 V5, V3 -1 are binomial surds.

*136. To Find the Square Root of a Binomial Surd. The famil-
iar formula for (a +b)? (§ 10, Formula VI) may be put into the form

1) . a?+b2+2 ab = (a+b)2.

Since this relation holds true for any values of a and b, let us sup-
pose in particular that both are positive, in which case we may
write a = Vz and b= Vy, where z and y are properly chosen positive
values. The equation just written then takes the form

T+y+2Vay=(Va+ vy

Extracting the square root of both members now gives
@ Vet+y) +2Vay=vi+Vy.

This formula, having been thus derived from (1), must therefore
hold true for any positive values of z and y.

Similarly, by starting with the familiar formula for (a —b)2, we
arrive at the formula

3) Vie+y) —2Vay=Vz—-Vy.

Formulas (2) and (3) are frequently used to obtain the square
root of a binomial surd (§ 134) as illustrated in the following
example.
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ExamprE. Find the square root of the binomial surd 11 +4Vv7.

SoLuTioN. We are to find \/11 +4V7.

This may be written V11 +2V'28, and it is now in the form of the
first member of Formula (2), provided we choose z and y so that
z+y =11 while zy =28.

The values of z and y which satisfy these last two equations are
seen (by inspection) to be =4, y=7.

Substituting these values of z and y in the second member of

(2) gives V44 V7 =24V7.
Therefore V114+4V7=24+V7. Ans.
CHECK.
CH+VT)R=2242. 2. VT4 (VT2 =4+4VT4+7=11+4V7.

The pupil will observe that all that is essential in working the
above example is to write the given surd term (4V7) so that it has
the coefficient 2 instead of 4. Similarly, all such problems may be
brought under Formulas (2) or (3) as soon as the coefficient of the
surd term has been reduced to 2.

* EXERCISES

Find the square root of each of the following expressions, and
check your answer.

1. 64+2V8.
[Hint. Herez+y =6, zy=8.]

2. 6—2Vv8, 4. 11-2V30. 6. 6+V32. 8. 8+4V3.
3. 744V3. 6. 6—-V20. . 1. 7—-V40. 9. 20—6V1L.

10. Establish Formula (3) of § 135 by a process similar to that
used in establishing Formula (2).



226 SECOND COURSE IN ALGEBRA

10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 024 | 0334 | 0374
11| 0414 | 0453 | 0492 | 0331 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755
12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106
18 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430
14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732

15| 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014
16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2263 | 2279

19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989

20| 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201
21 [ 3222 | 3243 | 3263 | 3281 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404

25 | 3¢ 4048 s
26 | 4130 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298
28 | 4472 | 4487 | 4502 | 4518 | 4533 4548 | 4564 | 4579 | 4594

30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900
31 | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038
82 | 5051 | 5063 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172
33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302

35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551
36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670
87 | 5682 | 5694 | 5705 | 6717 [ 5729 | 57 5752 | 5763 | 5776 | 5786
38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 58T7 | 5888 | 5899
89 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5YTT | 5YSS | 5IYY | 6010

40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117
41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222
42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6204 | 6304 | 6314 | 6325

44 | 6435 | 6141 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6523

45| 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618
46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 [ 6702 | 6712
47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803
48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893
49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | G955 | 6964 | 6972 | 6981

50 (6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067
51 | 7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | T143 | 7152
652 | 7160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | T226 | 7235
53 | 7243 | 7251 | 7259 | T267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7716
54 | 7324 | 7332 | 7340 | 7348 | 7336 | 7364 | 7372 | 7380 | 7388 | 7396
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N| o 1 2 3 4 | 5 ] 7 8 9

S35 | 7404 | T412 | 7419 | T427 | T435 | T443 | T451 | 7459 | 7466 | 7474
56 | 7482 | 7490 | 7497 | 7505 | T513 | 7520 | 76528 | TH36 | 7543 | 7551
57 | 7559 | TH66 | 7574 | 75682 | TH89 | T597 | 7604 | 7612 | 7619 | 7627
58 | 7634 | 764 7649 | 7657 | T66+ | T672 | T679 | 7686 | 7694 | 7701
59 | TT09 | 7716 | 7723 | 7731 | 7738 | TT45 | 7752 | 7760 | TT67 | 7774
60| 7782 | 7789 | 7796 | 7803 | 7810 | 7818 | 7825 | 7832 | 78390 | 7846
61 | 7853 | 7860 | 7868 | 7876 | 7882 | 7889 | 7896 | 7903 | 7910 | 7917
62 | 7924 | 7931 | 7938 | 79453 | 7952 | 7959 | TG T973 | 7980 | 7987
68 | 7993 | 8000 | 8007 | 8014 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055
64 | 8062 | 8069 | 8075 | 8082 | 8089 | 8096 | 8102 | 8109 | 8116 | 8122
65| 8129 | 8136 | 8142 | 8149 | 8156 | 8162 | 8169 | 8176 | 8182 | 8189
66 | 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254
67 | 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8299 | 8306 | 8312 | 8319
68 | 8325 | 8331 | 8338 | 8344 | 8351 | 8357 | 8363 | 8370 | 8376 | 8382
69 | 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 | 8445
70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506
71 | 8513 | 8319 | 8525 | 85631 | 8537 | 8543 | 8549 | 8555 | 8561 | 85G7
72 | 8573 | 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 | 8621 | 8627
78 | 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 | 8680
74 | 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727 | 8733 | 8739 | 8745
75| 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802
76 | 8308 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 | 8859
77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915
78 | 8921 | 8927 | 89032 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971
79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9015 | 9020 | 9025
80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079
81 | 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9117 | 9122 | 9128 | 9133
82 | 9138 | 9143 | 9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186
83 [ 9101 | 9196 | 9201 | 9206 | 9212 | 9217 | 9222 | 9227 | 9232 | 9238
84 | 9243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289
851 9204 | 9209 | 9304 | 9309 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340
83 | 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 93¢0
87 | 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440
83 | 0445 | 9450 | 9455 | 9460 | 9465 | 9469 | 9474 | 9479 | N84 | 9489
89 | 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | Y58
00 | 9342 | 9547 | 9552 | 9357 | 9562 | 9566 | 9571 | 957G | 9581 | 9586
91 | 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9619 | 9624 | 9628 | 9633
92 | 9638 | 9643 | 9647 | 9652 | 9657 | 9661 [ 9666 | 9671 | 9675 | 9680
93 {9685 | 9689 | 9604 | 9699 | 9703 | 9708 | 9713 | 9717 | 9722 | 9727
94 | 9731 | 9736 | 9741 | 9745 | 9750 | 9764 | 9759 | 9763 | 9768 | 9773
95| 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818
93 | 0823 | 9827 | 0832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863
07 | 9968 | 9872 | 90877 | 9881 | 9886 | 9800 | 9894 | 9899 | 9903 [ 9908
D3 9912 | 9917 | 9921 | 26 | 9930 | 9934 | 9939 | 943 | 948 | 9952
93 | 9956 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996
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Again, suppose we wish to determine log 27.6. The char-
acteristic (by §141) is 1. The mantissa, by Rule I, § 139,
is the same as that of log 276 ; and the latter, as given in the
tables, is .4409. Therefore, log 27.6 =1.4409. Ans.

As a last example, suppose we wish to determine log .0173.
The characteristic (by § 142) is —2, or 8-10. The mantissa,
by the rule in § 139, is the same as that of log 173 and
the latter, as obtained from the tables, is .2380. Therefore,
log .0173=8.2380—10. Ans.

These examples illustrate how the tables together with
Rules II and III, §§ 141, 142, enable us to determine com-
pletely the logarithm of any number provided it contains
no more than three significant figures. We may now sum-
marize our results in the following rule.

RuLe IV. To find the logarithm of a number of three signifi-
cant figures:

1. Look in the column headed N for the first two figures of the
given number. The mantissa will then be found on the hori-
zontal line opposite these two figures and in the column headed
by the third figure of the given number.

2. Prefix the characteristic according to Rules II and II1,
§§ 141, 142.

EXERCISES

Determine the logarithm of each of the following numbers,
expressing all negative characteristics as explained in § 143.

1. 451. 2. 318. 3. 861. 4. 900.
6. 72.5 [HiNT. Note how log 27.6 was obtained in § 144.)
6. 7.25 7. 93. [HiNnt. Write as 93.0]

8. 9. [HiNnt. Write as 9.00] 9. .0136

10. .936 11. .0036 [HinT. Write as .00360]
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12. 8560. 16. 45 18. .000235
13. .081 16. 61.7 19. }.
14. .8 17. 23,500. 20. 3.

145. To Find the Logarithm of a Number of More Than
Three Significant Figures. Suppose we wish to determine
log 286.7. Here we have four significant figures while our
tables only tell us the mantissas of numbers having three (or
less) significant figures (as in § 144 and in the preceding ex-
ercises). In such cases we proceed as follows:

From the tables

log 286=2.4564
log 286.7="? Difference =2.4597 —2.4564 = .0033
log 287 =2.4597

Since 286.7 lies between 286 and 287, its logarithm must
lie between their logarithms. Now, an increase of one unit
in the number (in going from 286 to 287) produces an increase
of .0033 in the mantissa. It is therefore assumed that an
increase of .7 in the number (in going from 286 to 286.7) pro-
duces an increase of .7 of .0033, or .00231, in the mantissa.

Therefore log 286.7=2.4564+.7 of .0033 =2.4564+.00231
=2.45871, so that

log 286.7=2.4587 (approximately). Ans.

In practice the answer is quickly obtained as follows:

The difference between any mantissa and the next higher
one in the table (neglecting the decimal point) is called a
tabular difference. The tabular difference in this example is
4597-4564, or 33. Taking .7 of this gives 23.1, which (keeping
only the first two figures) we call 23, and adding this to 4564
gives 4587. This, therefore, is the required mantissa of log
286.7, so ‘that log 286.7 =2.4587 (approximately). Ans.
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Similarly, in finding log 286.75 the tabular difference (as before)
is 33. Taking .75 of 33 gives 24.75, which (keeping only two figures)
has the approximate value 25.

Hence the mantissa of log 286.75 is 4564 +25 =4589. Therefore
log 286.75=2.4589. Ans.

Below are two examples further illustrating how the above
processes are quickly carried out in practice. The student
should form the habit of writing the work in this form.

ExampLE 1. Determine the value of log 48.731

SoLvuTioN. Mantissa of log 487 =6875 .
Mantisss of log 488 — 6884 } Tabular difference =9
.31 X9=2.79 =3 (approximately).
Hence
mantissa of log 48.731 =6875 +3 =6878.
Therefore
log 48.731=1.6878 Ans.

ExampLE 2. Determine the value of log .013403

SovuTioN. Mantissa of 134 =1271 .

‘Mantissa of 135=1303 } Tabulu difference =32.

.03 X32=.096 =1 (approximately).
Hence
mantissa of log .013403 =1271 41 =1272.
Therefore
log .013403 = —2+.1272 =8.1272 —-10.
Ans.

Note. The process which we have employed for determining
a mantissa when it does not actually occur in the tables is called
interpolation. When examined carefully, it will be seen that the pro-
cess is based upon the assumption that if a number is increased by
any fractional amount of itself, the logarithm of the number will like-
wise be increased by the same fractional amount of itself. Thus, in
- finding the mantissa of log 286.7 at the middle of p. 229, we assumed
that the increase of .7 in going from 286 to 286.7 would be accom-
panied by like increase of .7 in the logarithm. Such an assumption,
though not ezactly correct, is very nearly so in most cases and is
therefore sufficiently accurate for all ordinary purposes.
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Tables of logarithms much more extensive than those on pages
226, 227 have been prepared and are commonly used. See, for ex-
ample, The Macmillan Tables. By means of these, any desired
mantissa may usually be obtained as accurately as is necessary,
directly, that is without interpolation.

EXERCISES
Obtain the logarithm of each of the following numbers.
1. 6784 8. 4.806 15. 62.856
2. 2313 9. 1.508 16. 541.07
3. 7854 10. 3.276 17. 6.3478
4. 4926 11, .4567 18. 3.1416
6. 856.8 12. .08346 19. 1.7096
6. 42.17 13. 856.34 20. .15786
7. 9.567 14. 243.47 21. .085679

146. To Find the Number Corresponding to a Given Loga-
rithm. Thus far we have considered how to determine the
logarithm of a given number, but frequently the problem is
reversed, that is, it is the logarithm that is given and we wish
to find the number having that logarithm. The method of
doing this is the reverse of the method of §§ 144-145, and is
illustrated in the following examples.

ExampLE 1. Find the number whose logarithm is 1.9547

SovLuTioN. Locate 9547 among the mantissas in the table.
Having done so, we find in the column N on the line with 9547 the
figures 90. These form the first two figures of the desired number.

At the head of the column containing 9547 is 1, which is therefore
the third figure of the desired number.

Hence the number sought is made up of the figures 901.

The given characteristic being 1, the number just found must
be pointed off so as to have two figures to the left of its decimal
point (Rule II, § 141).

Therefore the number is 90.1. Ans.
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ExampLE 2. Find the number whose logarithm is 0.6341

SoLuTioN. As in Example 1, we look among the mantissas of
the table to find 6341. In this case we do not find exactly this man-
tissa, but we see that the next less mantissa appearing is 6335,
while the one next greater is 6345.

The numbers corresponding to these last two mantissas are seen
to be 430 and 431 respectively. Whence, if z represents the num-
ber sought, we have

Mantissa of log 430 =6335 } Diff. =6
Mantissa of log z =6341 *~ 7 } Tabular difference = 10.
Mantissa of log 431 =6345

Since an increase of 10 in the mantissa produces an increase of 1 in
the number, we assume that an increase of 6 in the mantissa will
produce an increase of %, or .6, in the number.

Hence the number sought has the figures 4306.

Since the given characteristic is 0, the number must be 4.306
(§141). Ans.

Note 1. The pupil will observe that in Example 1 the given
mantissa actually occurs in the tables, while in Example 2 it does
not, thus making it necessary in this last case to interpolate. (See
the Note in § 145.)

Note 2. The number whose logarithm is a given quantity is
called the antilogarithm of that quantity. Thus 100 is the anti-
logarithm of 2, 1000 is the antilogarithm of 3, ete.

EXERCISES

Find the numbers whose logarithms are given below.
1. 1.8751 9. 1.4893

2. 2.9405. 10. 2.8588

3. 0.3856 11. 3.7430

4. 3.5866 12. 0.5240

5. 9.6955—10 13. 0.6970

6. 8.7152—10 14. 9.7400—-10

7. 7.4900—10 15. 8.3090—10

8. 6.8519—10 16. 7.5308—10






NAPIER
(John Napier, 1550-1617)

Famous as the inventor of logarithms and first to show the advantage of
using them in reducing the labor of ordinary computations. Interested and
active also in the political and religious controversies of hia day.
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III. TeE Usk oF LoGAriTEMS IN COMPUTATION

147. To Find the Product of Several Numbers. The pro-
cesses of multiplication, division, raising to powers, and ex-
traction of roots, as carried out in arithmetic, may be greatly
shortened by the use of logarithms, as we shall now show.

Let us take any two numbers, for example 25 and 37, and
determine their logarithms. We find that log 25=1.3979
and log 37=1.5682. This means (§ 136) that

25=10-%" gnd 37=10.5682
Multiplying, we thus have
25 X 37 = 101-3079-+1-5682 (§ 117, Law I)
The last equality means (§ 136) that
log (25X37) =1.3979-4-1.5682,
or log (25X37) =log 25+log 37.

Similarly, if we start with the three numbers 25, 37, and 18

_ we can show that
log (25X 387X 18) =log 25-+log 37+log 18.

Thus we arrive at the following important rule.

RuLe V. The logarithm of a product is equal to the sum
of the logarithms of its factors.

. Thus log (13 X.0156 X99.8) =log 13 +log .0156 -+log 99.8.

The way in which this rule is used to find the value of the
product of several numbers is shown below.

ExampLe 1. To find the value of 13X.0156<99.8

SoruTioN. log 13= 1.1139
log .0156 = 8.1931-—-10
log 99.8=_1.9991
Adding, 11.3061 —10, or 1.3061
Henoe, by Rule V, the logarithm of the desired produect is 1.3061.
1t follows that the product itself is the number whose logarithm
is 1.3061. When we look up this number (as in § 146) we find it to
be 20.23. Hence 13 X.0156 %X99.8 =20.23 (approximately). Ans.
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ExampLE 2. To find the value of
8.45%.678X.0015X 956 X.111

SorLuTion. log 8.45= 0.9269
log .678= 9.8312-10
log .0015= 7.1761—10
log 956 = 2.9805
log .111= 9.0453—10
Adding, 29.9600 — 30 =9.9600 — 10.
Hence, by Rule V, the logarithm of the desired produect is seen to

be 9.9600 —10.
Therefore the product itself is found (as in § 146) to be .912

(approximately). Ans.

These examples lead to the following rule.

RuLe VI. To multiply several numbers:

1. Add the logarithms of the several factors.

2. The sum thus obtained is the logarithm of the product.

3. The product itself can then be determined as in § 146.

Note. It may happen (asin Example 2) that the sum of several
logarithms is negative. In such cases it is best to write the sum in
such a form that it will end with —10, thus conforming always to
§ 143.

EXERCISES
Find, by Rule V, § 147, the value of each of the following
logarithms.
1. log (35.1X7.29). 3. log (145.7 X8.35X.00456).
2. log (5X3.17X.0016). 4. log (3.456 X.001798X1.456).
Find (by Rule VI, § 147) the value of
6. 56.8X3.47X.735

Check your answer by multiplying out the long way as in arith-
metic. Compare the two results and see how great was the error
committed by following the short (logarithmic) method. Compare
also the time required for the two methods.
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6. .975X42.8X3.72
7. 896<40.8X3.75X.00489
8. 34.56X18.16X.0157
[HinT. See § 145.]
9. 576.8X43.25X3.576X.0576
10. 60.573X8.087X.008915X1.2387
11, 23X23X23X23X23X23X23, (or 237)
12. 1.2X2.3X3.4X4.5X5.6X6.7X7.8
13. .31X5.198X6.831X2.584X.00312<.07568

14. Since 25X 15=375 we know by Rule V, § 147, that the
logarithm of 25 added to the logarithm of 15 is equal to the
logarithm of 375. Show that the values given in the tables
for log 25, log 15, and log 375 confirm this result. Invent
and try out several other similar problems for yourself.

148. To Find the Quotient of Two Numbers. Let us take
any two numbers, for example 41 and 29, and look up their
logarithms. We find

log 41=1.6128

log 29=1.4624
These mean that
. 41=10"6128
and 29 =10Q-4624

Whence, dividing the first of these equalities by the second,
we obtain

. 106128 1.6128—1.4624
41+-29= 101.“24=10' g (§ 117, Law II)

The last equality means that
log (41+29) =1.6128 —1.4624 =log 41 —log 2.
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This result illustrates the following general rule. .

RuLe VII. The logarithm of a quotient is equal to the
logarithm of the dividend minus the logarithm of the divisor.
~ Thus log (467.3 +-.00149) =log 467.3 —log .00149

The way in which this rule is used to find the value of the
quotient of two numbers is shown below. ’

ExampLE 1. To find the value of 236+4.15

SoLuTION. log 236 =2.3729
log 4.15=0.6180
Subtracting, 1.7549

Hence the logarithm of the desired quotientis 1.7549 (Rule VII)

The number whose logarithm is 1.7549 is found (as in § 146)
to be 56.875

Therefore 236 +4.15 =56.875 (approximately). Ans.

ExampLE 2. To find the value of 1.46-+.00576

SoruTioN. log 1.46=0.1644 =10.1644 —10 (See Note below.)

log .00576 = 7.7619-10
Subtracting, 2.4025
The number whose logarithm is 2.4025 is found to be 252.64
Therefore 1.46 =+-.00576 =252.64 (approximately). Ans.

Thus we have the following rule.

RuLe VIII. To find the quotient of two numbers:

1. Subtract the logarithm of the divisor from the logarithm
of the dividend.

2. The difference thus obtamed 18 the logarithm of the quo-
tient.

3. The quotient itself can then be determined as in § 146.

Note. To subtract a negative logarithm from a positive one,
or to subtract a greater logarithm from a less, increase the charac-
teristic of the minuend by 10, writing —10 after the mantissa to
compensate. Thus, in Example 2, we wished to subtract the nega-
tive logarithm 7.7619 —10 from the positive one 0.1644. There-
fore 0.1644 was written in the form 10.1644 —10, after which the
subtraction was easily performed.
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EXERCISES
Find, by Rule VII, § 148, the value of each of the follow-
ing logarithms.
1. log (13+9). 8. log (38.76-+.0017).
2. log (217+8.16). 4. log (8.764+114.3).

Find, by Rule VIII, § 148, the value of each of the follow-
ing quotients.
5. 246-+-15.7

Check your answer by dividing out the long way as in arith-
metic. Compare the two results and see how great was the error
committed by following the short (logarithmic) method.

6. 34.7+5.34 8. 45.67+38.01
7. 389.7+4.353 9. 3.25-+.00876
[HinT. See § 145.] [HinT. See Note in § 148.]
10. 49.6-+-87.3
40.3X6.35
1L 3.72

[Hint. Find the logarithm of the numerator by Rule V, § 147.]
12 .0036X2.36 13 24.3X.695.0831
’ .0084 ’ 8.40X.216

14. Since 27+9=3 we know, by Rule VII, § 147, that the
logarithm of 9 subtracted from the logarithm of 27 is equal to
the logarithm of 3. Show that the values given in the tables
for log 9, log 27, and log 3 confirm this result. Invent and
try out several other similar problems for yourself.

149. To Raise a Number to a Power. Let us take any
number, for example 25, and raise it to any power, say the
fourth. We then have 25% which means 25X25X25X%25.

Hence, by Rule V, § 147, we must have

log 25*=1log 25+1log 254 log 25-+1og 25, or log 25¢=4 log 25.
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This illustrates the following rule.

RuLe IX. The logarithm of any power of a number is
equal to the logarithm of the number multiplied by the exponent
indicating the power.

Thus log 3.171*=101og 3.17 ; similarly, log. 00174¢ =6 log .00174.

The way in which this principle is used to raise a number

to a power is shown below.
Exampre 1. To find the value of 2.374

SoLuTION. log 2.37= 0.3741
Multiplying, 1.4988

Hence _
log 2.37¢= 1.4988 (Rule IX)

The number whose logarithm is 1.4988 is found to be 31.535

Therefore
2.37¢=31.525 (approximately). Ans.

ExampLE 2. To find the value of .8565

SorLvuTION. log .856 = 9.9325—10
5
Multiplying, 49.6625—50 =9.6625 —-10

The number whose logarithm is 9.6625—10 is .4597 (§ 146)

Therefore
.8565=.4597 (approximately). Ans.

Thus we have the following rule.

Rure X. To raise a number to a power:

1. Multiply the logarithm of the number by the expoment
tndicating the power.

2. The result thus obtained is the logarithm of the answer.

3. The answer itself can then be determined as in § 146.

EXERCISES
Find, by Rule IX, § 149, the value of each of the following
logarithms.
1. log 165 2. log 3.12% 3. log .0176* 4. log 36.64*
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Find, by Rule X, § 149, the value. of each of the following
expressions.
5. 8.828

Check your answer by raising 8.82 to the third power as in

arithmetic. Compare the two results and see how great was the
error committed by following the short (logarithmie) method.

6. 4.12¢ 7. 4.123¢

8. .175°% [HintT. See Ex. 2 in § 149.]

9. 813X.0152 [Hint. Combine the rules of §§ 147 and 149.]
10. 43X8.9*X.075%
11, 8.76 X53.9X4.5?

2.32¢3.15X5.143

[Hint. Use Rules VI, VIII, X.]

12. Since =729 we know, by Rule IX, § 149, that three
times the logarithm of 9 is equal to the logarithm of 729.
Show that the values given in the tables for log 9 and log 729
confirm this result. Invent and try out several other similar
problems for yourself.

160. To Extract Any Root of a Number. Let us take any
number, for example 36, and consider any root of it, say the
fifth, that is, let us consider V/36.

Supposing z to be the value of the desired root, we have

z5=36. (§ 118)

Now the logarithm of the first member of this equality is
equal to 5 log z by Rule IX.

Hence 5 log z=1log 36, or log z=3 log 36.

This illustrates the following rule.

RuLe XI. The logarithm of the root of a number is equal
to the logarithm of the radicand divided by the index of the root.

Thus log +/2.73=} log 2.73; similarly, log v/ .01685=1 log .01685.

The way in which this principle is used to extract the roots
of numbers in arithmetic will now be shown.
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ExampLe 1. To find the value of V/85.2
SoLUTION. log 85.2 =1.9304,

so that 4 of log 85.2=0.4826.
Hence log V85.2=0.4826. (Rule XI)
TLe number whose logarithm is 0.4826 is 3.038 (§ 146)
Therefore +v85.2 =3.038 (approximately). Ans.
Exampre 2. To find the value of V/.0875
SoLuTioN. log .0875 =8.9420 —10,

so that } of log .0875 =%( 8.9420 —10) =}(48.9420 —50)

=0.7884 —10. (See Note below.)

The number whose logarithm is 9.7884 —10 is .6143 (§ 146)
Therefore V0875 =.6143 (approximately). Ans.

These examples lead to the following rule.
RuLe XII. To find any root of any number.
1. Daivide the logarithm of the number by the index of the root.
2. The quotient thus obtained is the logarithm of the desired
root. '

3. The root itself can then be determined as in § 146.

Note. To divide a negative logarithm, write it ia a form where
the negative part of the characteristic may be divided exactly by
the divisor giving —10 as quotient. Thus, in Example 2, we wrote

8.9420 —10 in the form 48.9420 —50 after which the division by 5
was easily done and resulted in a form ending in —10.

EXERCISES

Find, by Rule XI, § 150, the value of each of the following
logarithms.
1. log V16 2. log V312 3. log V0175 4. log V/38.56
Find, by Rule XII, § 150, the value of each of the following.
5. V315

Check your answer by extracting the square root of 315 (correct
to three decimal places) as in arithmetic. Compare the two results
and see how great was the error committed by following the short
(logarithmic) method.
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6. V4.32 7. V4325
8. Vv.0957

[HinT. See Example 2 in § 150.]
9. V8.76X.0153
[Hint. Use Rules IX and XI.]

) Y — 576<9.13%
10. V576X V8.76 1.\ 3855328
12. Since V49=7 we know, by Rule XI, § 150, that one
half the logarithm of 49 is equal to the logarithm of 7. Show
that the values given in the tables for log 49 and log 7 con-

firm this result. Invent and try out several other similar
problems for yourself.

APPLIED PROBLEMS

Solve the following exercises by logarithms.

1. How many cubic feet of air are there in a schoolroom
whose dimensions are 50.5 ft. by 25.3 ft. by 10.4 ft.?

2. How many gallons will a rectangular tank hold whose
dimensions are 8 ft. 10 in. by 9 ft. 3 in. by 10 ft 1in.?

3. How much wheat will a cylindrical bin hold if the
diameter of the base is 9 ft. 5 in. and the height is 40 ft. 4 in.?

4. How much would a sphere of solid cork weigh if its
diameter was 4 ft. 3 in., it being known that the specific
gravity of cork is .24? (See Example 14 (e), page 6.)

[Hint. To say that the specific gravity of cork is .24 means that
any volume of ‘cork weighs .24 times as much as an equal volume of
water. Water weighs 62.5 pounds per cubic foot.]

6. The diameter d in inches of a wrought-iron shaft re-
quired to transmit h horse power at a speed of n revolutions

per minute is given by the formula d=\s/(—5%—h- Find the

diameter required when 135 horse power is to be transmitted

at a speed of 130 revolutions per minute.
R
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6. The amount to which P dollars will accumulate at
r% compound interest in n years is given by the formula

r n
A= P(l +ﬁ) :
Find A if P=$500, r=5, and n=10.
Find A if P=8100, r=3.5,and n=15,
7. By means of Formula 3 of § 65, find the area of the
triangle whose sides are 3.15 in., 4.87 in., and 2.68 in.
.8. The height H of a mountain in feet is given by the

formula B r
— —r +¢
H 49,000( R+r)(1 +?06)’
where R, r are the observed heights of the barometer in inches
at the foot and at the summit of the mountain, and where T,
t are the observed Fahrenheit temperatures at the foot and
summit.

Find the height of a mountain if the height of the barom-
eter at the foot is 29.6 inches and at the summit 25.35
inches, while the temperature at the foot is 67° and at the
summit 32°.

9. By means of the formula in Ex. 6 answer the follow-
ing question: How long will it take a sum of money to
double itself if placed at compound interest at 59%?

14.2 years. Ans.

GENERAL LOGARITHMS

*161. Logarithms to Any Base. In § 136 we defined the loga-
rithm of a number as the power to which 10 must be raised to obtain
that number. Thus, from such equalities as 102 =100, 10® =1000,
ete., we had log 100=2, log 1000=3, etc. Strictly speaking, this
defines the logarithm of a number to the base 10, or, as it is usually
called, a common logarithm.

We may and frequently do use some other base than 10. For
example, since 3?=9, 33=27, 3*=8l, etc., we can say that the
logarithm of 9 to the base 3 is 2, the logarithm of 27 to the base 3 is 3,
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the logarithm of 81 to the base 3 is 4, ete. The usual way of denot-
ing thisis to write log:9 =2, 1og:27 =3, log:81 =4, etc. Observe that
the number being used as the base is thus placed to the right and
just below the symbol log.

Similarly, we have log:16 =4, logs64 =2, logs125 =3, ete.

Thus we have the following general definition. The logarithm of
any number x to a given base a is the power of a required to givex. Itis
written logesz. Any positive number except 1 may be used as the base.

Note. When the base a is taken equal to 10 (that is, in the usual
case) we write simply log z instead of logiex.

EXERCISES
State first the meaning and then the value of
1. logA4. 2. log:8. 3. log.l6. 4. logsd.
6. log:1. 6. logigy. 7. logs.2 8. logs32.

*162. Logarithm of a Product. We can now show that Rule V,
§ 147, holds true whatever the base. That is, if M and N are any two .
numbers, and a the base, then .
logs M N =log.M +logsN.
Proor. Letz=log,M and y=logsN. Thena*=M andav=N
(§ 151). Hence a*:-a¥=MN, or a*tv=MN (§117, Law I).
But the last equality means that
logsMN =z +y=log.M +log.N. (§ 151)
*163. Logarithm of a Quotient. Rule VII, § 148, holds true
whatever the base. That is, if M and N are any two numbers, then
log.(M+N) =log.M —log.N.
Proor. Letz=log.M and y=logsN. Thena*=M and av=N.
(§ 151). Hence, a*+av=M +N, ora>=v=M +N (§ 117, Law II).
But the last equality means that
logs(M +N) =z —y =logsM —log.N. (§ 151)
*164. Logarithm of a Power of a Number. Rule IX, § 149, holds
true whatever the base. That is, if M is any number and » any (posi-
tive integral) power, then
log.M™=n log.M.
Proor. Letz=logsM. Thena®=M (§151)and hencea®s = M*
(§ 117, Law III). But the last equality means that
logaM" =nz =n log.M. (§ 151)
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*165. Logarithm of a Root of a Number. Rule XI, § 150,
true whatever the base. That is, if M is any number and » any
tive integral) root, then

log, :/I—U—=—1- logsM. _
n

Proor. Let z=log.M Then a*=M (§151) and § ~~
&’)“‘=M‘/- ora*/»="M (§121). But the last equality m
at
log. VM =% =Liog.M.
n n

*166. Summary. From the results established in §§ 151-15
appears that Rules V-XII, §§ 147-150, are not only true wh
base is 10 (as was there taken) but they are true for any
Complete tables have been worked out for various bases other
10, but we shall not consider them further here. o

Note. The reason why 1 cannot be used as a base is that
any power is equal to 1, that is, we cannot get different numberl
raising 1 to different powers.

*167. Historical Note. Logarithms were first introduced
employed for shortening computation by Joan NapPIer (1550-1617
a Scotchman. (See the picture facing p. 233.) However, he d
not use the base 10, this being first done by the English mathema:
cian Brigas (1556-1631), who computed the first table of comm:
logarithms and did much to bring logarithms into general use.

*168. Calculating Machines. The Slide-Rule. Machines ha
been invented and are now coming into very general use, especial
by engineers, by which the processes of multiplication, divisic
involution, and evolution can be immediately performed. T
construction of these machines depends upon the prineciples
logarithms, but to describe the machines and their methods
working would take us beyond the scope of this text. The simple
machine of this kind is the slide rule, the use of which is easi
understood. A simple slide rule with directions is inexpensi
and may ordinarily be secured from booksellers.

Fia. 70. Tue Suibs Ruus.



PART III. SUPPLEMENTARY TOPICS

CHAPTER XXI
FUNCTIONS

169. The Function Idea. In ordinary speech we make
such statements as the following :

1. The area of a circle depends upon the length of its
radius.

2. The time it takes to go from one place to another de-
pends upon the distance between them.

3. The power which an engine can exert depends upon the
pressure per square inch of the steam in the boiler.

Another way of stating these facts is as follows:

1. The area of a circle is a function of the length of its
radius. )

2. The time it takes to go from one place to another is a
function of the distance between them.

3. The power which an engine can exert is a function of
the pressure per square inch of the steam in the boiler.

The idea thus conveyed by the word function is that we
have one magnitude whose value is determined as soon as we
know the value of some other one (or more) magnitudes upon
which the first one depends. This idea is at once seen to be
universal in everyday experience and for that reason it be-
comes of great importance in mathematics.t In the present

t The extended formal study of the function idea enters into
that branch of mathematics known as the Calculus.
245
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chapter we shall indicate briefly how it is related to some of
the subjects treated in the preceding chapters, noting es-
pecially the significance of the idea when considered graphi-
cally.

160. Types of Algebraic Functions. An expression of the
form

(1) aix+a,

where the coefficients a, and a, have any given values (except
a, must not be 0) is called a linear function of x. Observe
that every such expression depends for its value upon the
value assigned to z, and is determined as soon as z is known.
Hence it is a function of x in the sense explained in § 159.
It is called a linear function since it is of the first degree in z.
(Compare § 26.)

For example, 2 £ +3 is a linear function of z. Here we have the
form (1) in which ao=2 and a;=3. Similarly, 32-2, z—4,~z +1
and 3z are linear functions of z. (Why?)

Likewise, 3¢ +2 is a linear funection of ¢, while —r45 is a linear
function of r, ete.

As an example of a linear function in everyday experience, sup-
pose that in Fig. 71 a person starts from the point P and moves to
the right at the rate of 15 miles per hour, and let Q be the point 10

Q P >
“—0— -
Fia. 71.

miles to the left of P. Then we may say that the distance of the
traveler from Q is a linear function of the time he has been traveling,
for if ¢ represent the number of hours he has been traveling, his dis-
tance from P is 15¢ (see § 62) and hence his distance from Q is
15t+10. This is seen to be a linear function of ¢, being of the form
(1) in which ao=15 and a, =10.

Likewise, the interest which a given principal, P, will yield in one
year is a linear function of the rate, for, if r be the rate, the interest
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in questlon is given by the formula P X—— ,or—P- r, and this is seen

1000 100

to be of the form (1) in whleh ao—-ﬁo, and a,=0. .

An expression of the form
@ aox’+a,x+ay,

where the coefficients ao, @1, and a2 have any given values
(except that a, must not be 0) is called a quadratic function
of z.

For example, 22243 z —1 is a quadratic function of x because it
is of the form (2) in which ap=2, a1 =3, ;= —1. Likewise, 22+ z;
z?4+1; —2243zx; 5x; 2? are quadratic functions of z. (Why?)

Again, we may say that the area of a square is & quadratic func-
tion of the length of one side, for if = be the length of side, the area
is 22 and this is of the form (2) in which ao=1, a; =a,=0.

Similarly, the area of a circle is a quadratic function of the
radius. (Why?)

An expression of the form
®3) apx’+ a1 x2+-a.x+as,

where the coefficients a,, a,, a2 and a; have any given values
(except that ap must not be 0) is called a cubic function of x.
For example, 323 —z*+3z—1; 4x8—2z; 28—222+1; 523; x’,'
ete. (Why?)
Again, we may say that the volume of a cube is a cubie function

of the length of one edge. (Why?) | Also, the volume of a sphere
is a cubic function of the radius. (Why?)

It may now be observed that the expressions (1), (2), and
(3) are but special forms of the more general expression
“4) apx"+ax" 1 4-ax?+---+-a,.1x+a,

where it is understood that n can be any positive integer,
while the coefficients ao, a,, as, --- a, have any given values
(except that ao must not be 0). This is called the general
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integral rational function of z, or, more simply, a polynomial
in x. It reduces to the linear function (1) when n=1;
to the quadratic function (2) when n=2; ete.

Expressions such as

o= s 5
Vz, Vz, VI, 3VZ+ VI, 22 +4 zt _\a/;il

and all others composed merely of powers or roots (or both)
of x are classed under the name of algebraic functions.
Since all functions of the form (4) are composed of integral
powers only of z, they are but special cases of the algebraic
functions just mentioned.

EXERCISES

1. Show that the thickness of a book is a linear function
of the number of its pages.

[Hint. Let z be the number of pages, d be the thickness of each
page, and D the thickness of each cover. Now build up the formula
for the thickness of the book and note which of the functional
types in § 160 is present.]

2. The supply of gasoline in a tank was very low, its
depth being but 1 inch all over the bottom, when it was re-
plenished from a pipe which delivered 3 gallons per minute.
Show that the amount in the tank at any moment during the
filling was a linear function of the time since the filling began.

3. Show that the force which a steam engine has at any
moment at its cylinder is a linear function of the area of the
piston ; also that it is a linear function of the boiler pressure
of the steam per square inch.

4. A certain room contains a number of 16-candle-power
clectric lights and a number of Welsbach gas-burners. Show
that the amount of illumination at any time is a linear
function of the number of electric lights turned on. Is this
true regardless of the number of gas-burners already lighted ?



XXI1, § 160] FUNCTIONS 249

6. Show that the perimeter of a square is a linear func-
tion of the length of one side; also that the circumference
of a circle is a linear function of its radius.

6. Show that if each side of a square be increased by z,
the corresponding increase in the area will be a quadratic
function of z.

[HinT. Let a =the length of one side of the original square. °

Then the area is a? and the area of the new square is (e +z)?. Now
formulate the expression for the increase in area.]

7. Show that if the radius of a circle be increased by z,
the corresponding increase in area will be a quadratic func-
tion of .

8. Show that if the edge of a cube be increased by z
the corresponding increase in volume will be a cubic function
of z. State and prove the corresponding statement for a
sphere.

9. Show that if y varies directly as  (see § 113), then y
is a linear function of x. Is the converse of this statement
necessarily true, namely if y is a linear function of z, then y
varies directly as z?

10. When y varies as the square of z, to which one of the
functional types mentioned in § 160 does y belong? Answer
the same question when y varies inversely as « ; when y varies
inversely as the square of z.

11. A certain linear function of z takes the value 5 when
z=1 and takes the value 8 when z=2. Determine com-
pletely the form of the function.

SoruTioN. Since the function is linear, it is of the form apxr +a;.
Since this expression must (by hypothesis) be equal to 5 when z =1,
we have ao- 14a,=5. Likewise, placing z =2, gives ao* 2+a; =8.
Solving these two equations for ao and a; we obtain ay=3, a;=2.
The desired funetion is therefore 3 x4+2. Ans.
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12. A certain linear function of = takes the value 14
when =3, and takes the value —6 when x=—1. Deter-
mine completely the form of the function.

13. A certain quadratic function takes the value 0 when
z=1, and the value 1 when =2, and the value 4 when z=3.
Determine completely the form of the function.

14. Show that the area of any triangle is an algebraic
function of the sum of its three sides. (See Formula 3 in
§ 65.)

161. Functions Considered Graphically. By the graph
of a function is meant the line or curve which results when
some letter, as y, is placed equal to the function and the graph
is drawn of the equation thus obtained. The purpose of
the graph is to bring out clearly and quickly to the eye the
relation between the given function and the quantity (vari-
able) upon which it depends for its values.

The method of drawing such graphs is precisely the same
as that given in § 29, p. 43 for equations of the first degree,
and in § 57, p. 90, for quadratic equations.

Thus, in order to obtain the graph of the function 3, we place
y =2’ and proceed to draw the graph of this equation in the way
explained in § 29, that is, we assign various values to z and compute
(from this equation) the corresponding values of y, then we plot
each point thus obtained and finally draw the smooth curve passing
through all such points.

Below is a table of several values of z and y thus computed ;
and the graph is shown in Fig. 72.

When z = -2 -1 0 1 2 3 4

then y= -8 -1 0 1 8 27 64

The portion of the curve lying to the right of the y-axis extends up-
ward indefinitely, while the portion to the left of the same axis ex-
tends downward indefinitely. Note that, from the way this curve has
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been drawn, it at once brings out to the eye
the value of the given function z3 for any
value of the letter z upon which this func-
tion depends, the function values being the
ordinates (§ 28) of the points on the curve.
For example, at x =2 the corresponding
ordinate measures 8, which is the function
value then present.

This curve may be used as a graphical
table of cubes of numbers. Thus, if z =1.5,
y =3.4, approximately, ete. Likewise, if y
is given first, the curve shows the cube root
of y; for example, if y=4, z is about 1.6.
The figure may be drawn by the student on
a much larger scale; the values of z and ¥y
can be read much more accurately from

such a figure than from the small figure on .

this page.

Another means of improving the accu-
racy of the figure is to take a longer dis-
tance on the horizontal line to represent one
unit than is taken to represent one unit on
the vertical scale.
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Fie. 72,

The graph of every linear function is a straight line. The
graph of every other algebraic function is a curved line.

For example, in considering the graph
of the linear function $z—5, we place
y=%x—5. But this is an equation of the
first degree between z and y and hence
(§ 29) its graph is a straight line. Fig. 73

shows the result.

Note that the graph cuts the z-axis
in one point. The abscissa of this par-
ticular point is 4, which indicates that 4
is the root, or solution, of the equation
$2—5=0, for it is this value of z that

FiG. 73. makes y =0.
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The graph of every quadratic function belongs to the class
of curves known as parabolas. A parabola resembles in form
an oval, open at one end. It never cuts the z-axis in more
than two points.

Fig. 74 shows the graph of the quadratic function z*+4z—2.
Note that the curve cuts the z-axis at two points whose absecis-
sas are —2 and 1, respectively. This indicates that —2 and 1 are
the roots of the quadratic equation z2+z —2 =0.

Fia. 74. ) F1a. 75.

The general form of the graph of a cubic function is that
of an indefinitely long smooth curve which cuts the z-axis
in no more than three points.

Fig. 75 shows the graph of the cubic function 22 -3 22—z +43. It
cuts the z-axis at three points whose abscissas are respectively —1,
1,and 3. These values, therefore, are the roots of the cubic equa-
tion 28 -3 z*—2+3 =0.
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Similarly, the general form of the graph of the rational
integral function of the fourth degree is that of an indefinitely
long smooth curve which cuts the z-axis in no more than
four points. And it may be said likewise that the graph
of the general integral function of degree n (see (4), § 160)
is an indefinitely long smooth curve which cuts the z-axis
in no more than n points.

Fig. 76 shows, for example, the graph of 2 x4 —5 2345 x - 2, this
being a function of the fourth degree. The four points where the
curve cuts the z-axis have abscissas which are equal respectively
to —1, 4, 1,and 2. These values, therefore, are the roots of the
equation 2 z¢ -5 23 +52—2=0.

F1a. 76. : Fiu. 77.

Fractional expressions give rise to more complex graphs, which
may have more than one piece. Fig. 77 shows, for example, the
graph of 1/z. If we let y=1/z, y varies inversely as = (§ 110).
The curve is therefore similar to those drawn in § 115, Fig. 69.
The graph consists of two branches and belongs to the class of
curves known as hyperbolas. These we have already met in § 78.
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EXERCISES

Draw the graphs of the following functions by plotting
several points on each and drawing the curve through them.
Try to plot enough points so that the form and location of
the various waves, or arches, of the curve will be brought
out clearly, as in the figures of § 161. Note how many
times the curve cuts the z-axis and make such inferences as
you can regarding the roots of the corresponding equation.

[HinT. When the graph of a quadratic function fails to cut the
z-axis, this indicates that the roots of the corresponding quadratic
equation are imaginary. (See §§ 57, 60.) Similarly, when the
graph of a cubic function cuts the z-axis in but one point, this indi-
cates that there is but one real root to the corresponding equation,
the other two roots being imaginary. In general, the number of
times the graph cuts the z-axis indicates the number of real roots
of the corresponding equation, the number of imaginary roots being
the degree of the equation minus the number of real roots.]

1. 3z+4. 2. = 3. 2t—z-2. 4. 22—-14.
6. x2+1. 6. z*—3 x2—z+43. 7. 2243 2242 x4-6.



CHAPTER XXII

MATHEMATICAL INDUCTION — BINOMIAL THEOREM

162. Mathematical Induction. The three following
purely arithmetic relations are easily seen to be true:

142=3@2+1),
1+2+3=§3+1),
1+2+3+4=4(4+1).

‘We might at once infer from these that if n be any positive
integer, there exists the algebraic relation

(1 14243 +4++n=2n+1),

the dots indicating that the addition of the terms on the right
continues up to and including the number .

For example, if n =8, this would mean that

14+24-3+44+54+64+74+8=3(8+1).

Again, if n =10, it would mean that

14+2+434+4+54+6+74+8+9+10=22(10+1).

That these are indeed true relations is discovered as soon as we
simplify them. Let the pupil convince himself on this point.

It is now to be carefully observed that the inference just
made, namely that (1) is true for any n, is not yet justified,
strictly speaking, from anything we have done, for we have
only shown that (1) holds good for certain special values of n,
and we could never hope to do more than this however long
we continued to try out the formula in this way.

Something more than a knowledge of special cases must always
bhe known before any perfectly certain general inference can be made.
For example, the fact that Saturday was cloudy for 38 weeks in suc-
cession gives no certain information that it will be so on the 39th

week.
255
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We shall now show how the general formula (1) may be
established free from all objection, that is in a way that
leaves no possible question as to its truth in all cases.

Let r represent any one of the special values of n for which
we know (1) to be true. Then

@) 1424344+ Fr=Z(r+1).
Let us add (r+1) to both sides. The result is
1+243-+4+ -+ (1) = S+ (+1).
In the second member of the last equation we may write
SO+ C+D=G+1(F+1) =+ (FH)="H oo

whlle the first member has the same meaning as

142434+ (r+1).
Thus, (2) being given us, it follows that we may write

3) 1424344+ 4 (r+1) =’+71(r+2>.

But (3) is seen to be precisely the same as (2) except that
r+1 now replaces r throughout. Stated in words, this re-
sult means that if (1) is true when n =r, as we have supposed,
then it holds true necessarily for the next greater value of n,
which is r41.

The original fact which we wished to establish (namely,
that (1) is true for any n) now follows without difficulty.
In fact, we know (see beginning of this section) that (1) is
true when n=4, from which it now follows that it must be
true also when n=>5. Being true when n=»5, the same
reasoning says it must be true also when n=6. Being true
when n=6, it must be likewise true when n=7. Proceeding
in this way, we may reach any integer » we may mention,
however large it may be. Hence (1) is true for any such
value of n.
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This method of reasoning illustrates what is termed
mathematical induction. Another example of the process
will now be given, the steps being arranged, however, in a
more condensed form.

ExampLE. Prove by mathematical induction that
1) 1434547+---+ (2 n—1)=n2 (n=any positive integer)

SoruTioN. When n =1, the formula gives 1 =12; when n =2, it
gives 14+43=2'; when n=3, it gives 1+3+5=3% all of which
arithmetical relations are seen to be correct.

Let r represent any value of n for which the formula has been
proved. Then
) 1434547+ +2r—1)=r2%

Adding (2 r+41) to each member gives
(B) 1434547+ +@r+1)=r+@2 r4+1)=r*+2 r +1=(r +1).

But (3) is the same as (2) except that r has been replaced through-
out by r+1. Henece, if (1) is true for any value of =, such as r, it
is necessarily true also for that value of n increased by 1.

Now, we know (1) to be true when n=3. (See above.) Hence it
must be true when n=4. Being true when n =4, it must be true
when n =5, ete., and in this way we now know that (1) is true for
any value (positive integral) of n whatever.

EXERCISES

Prove the correctness of each of the following formulas
by mathematical induction, n always being understood to
be any positive integer.

1. 24446484+ :--+2n=n(n+1).
[Hint. First try out for n=1, n=2, and n=3. Let r represent

a number for which the formula holds. Add 2(r+1) to both mem-
bers of the resulting equation and compare results.]

2. 34+6+9+12+4+-+3n =3?"(n+1).

8. 124204324 424 4 n2=1 n(n+1)(2 n+1).
4 2444604+ (2n) =2 n(n+1)@2 n+1).
6. 13428433443+ ---4-nP=1n2(n+1)%

S
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1 1 n_
1. 2+2 3+3 4+ +n(n+1) n+1

7. 24224284244 ... 420 =2(2—1).

8. Prove that if n is any positive integer, a*—b* is divisi-
ble by a—b.

[HINT. Since ar*!—brtt=a(a"—b")+br(a—>b), it follows that
ar*1 —br+ will be divisible by a —b whenever ar—b" is divisible by
a-—b.|

9. Prove that a**—b* is divisible by a+b.

163. The Binomial Theorem. If we raise the binomial
{a+zx) to the second power, that is find (a+z)2, the result
is a?+2azx+2* (§10). Similarly, by repeated multiplica-
tion of (a+z) into itself, we can find the expanded forms for
(a+2)%, (a+2x)4 (a+2)5 etc. The results which we find in
this way have been placed for reference in a table below :

(a+zx)*=0a*+2 ar+22

(a+x)*=0a*+3 a*c+3 ax®+2°.

(a+x)t=0a*+4 a*z+6 a®x2+4 ax®+2t
(a+x)5=a’+6 a*z+10 a*2?4-10 a?x*+ 6 axt+ x5, ete.

Upon comparing these, we see that the expansion of (a+z)*,
where n 1s any posttive integer, has the following properties:

1. The exponent of a in the first term is n, and it decreases
by 1 in each succeeding term.

The last term, or z*, may be regarded as a%z*. (See § 122.)

2. The first term does not contain x. The exponent of x in
the second term ts 1 and it increases by 1 in each succeeding
term until it becomes n in the last term.

3. The coefficient of the first term is 1; that of the second
term 1s n.

4. If the coeffictent of any term be multiplied by the exponent
of a in that term, and the product be divided by the number of
the term, the quotient s the coeffictent of the next term.
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For example, the term 6 a2z2, which is the third term in the ex-
pansion of (a+z)* (see p. 258) has a coefficient, namely 6, which
may be derived by multiplying the coefficient of the preceding term
(which is 4) by the exponent of a in that term (which is 3) and
dividing the product thus obtained by the number of that term
(which is 2).

5. The total number of terms in the expansion is n+1.

The results just observed regarding the expansion of
(a+2x)", where n is any positive integer, may be summarized
and condensed into a single formula as follows:

(a+x)"—a"+na"-1x+n(n l)w'2x2
n(n—l)(n—z) 8431 ..
+ 1.2.3 a4,

the dots indicating that the terms are to be supplied in the
manner indicated up to the last one, or (n+1)st.

This formula is called the binomial theorem. By means
of it, one may write down at once the expansion of any
binomial raised to any positive integral power. That the
formula is true in all cases, when 7 is a positive integer, will
be proved in detail in § 165. We assume its truth here for
those small values of n for which its correctness is easily
tested.

Note. The formula is generally attributed to Sir Isaac Newton
(1642-1727) ; see the picture facing p. 193.

ExamrrLe 1. Expand (a+z)8.
SoruTtioN. Here n =6, so the formula gives

6-5 6-5-4 6-
6—gt bp 42" 9 442 373 4
(a+z)¢=a®+6 a’z+ - aa:+ a’x -

6 5- 4 3 2 L6-

ti 2345110

Slmphfymg the various coefficients by performln
cancelations in each, we obtain

(a+z)8=a®+6 asz+15 a‘z?+20 a2z +15 a?z* 46 axs 428 Ans.

a?rt

#w#

NO‘NU!
ﬂiw#w

l
6
ossible

aqo:
ou@ll\')

the
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Note. It may be observed that the coefficients of the first and
last terms turn out to be the same; likewise the coefficients of the
second and next to the last terms are the same, and so on symmetri-
cally as we read the expansion from its two ends. This feature is
true of the expansion of (a+z) to any power. (Note the expansions
of (a+2z)?, (a+z)3, (a+z), ete., as given at the beginning of § 163.)

ExampLE 2. Expand (2—m)®.
. SoLurioN. Here a=2, z= —m, and n=>5. The formula thus
gives
@-my=2545- 2(-m)+3 2. B(—mp 4322, (s

3
5.4-3-2 . . 5-4-3-2.1,
234 2™ o34 5™

Simplifying the coefficients (as in Example 1) this becomes
(2—m)s=2545- 24(—m) +10 - 25(—m)?+10 - 22(—m)?
+5- 2(=m)s+(—m).
Making further simplifications, we obtain
(2--m)5=32—-80 m+80 m* —40 m*+10 m* —mSs. Ans.
Note. The result for (2—z)% is the same as that for (2+z)*
except that the signs of the terms are alternately positive and
negative instead of all positive.. A similar remark applies to the

expansion of every binomial of the form (a —z)" as compared to
that of (a+z)".

EXERCISES

Expand each of the following powers.

At R S D
b o e (22
A e A
A e )
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“164. The General Term of (a+x)". The third term in the

expansion of (a+z)*, as given by the formula in § 163, is
M{'—-%la""z’. (third term)

Observe that the exponent of z is 1 less than the number of the
term; the exponent of a is » minus the exponent of z; the last
factor of the denominator equals the exponent of z ; in the numerator
there are as many factors as in the denominator.

Precisely the same statements can be made as regards the fourth

term, or
"ﬂlf‘l%(%g)a""ﬁ. (fourth term)
In the same way, it appears that the above statements can be
made of any term, such as the rth, so that the formula for the rth
term is

A=) =2): (R =T+2) jurrizem,
1-.2.3---(r—-1)
ExamprLE. Find the 7th term of (2 b —c)t.
SorLuTioN. Here a=2b, r=(—c), n=10, and r=7. Therefore
{using the formula), the desired 7th term is

10-9-8-7-6-5
49968009, 9 ppu(—_c)t= 2 b)4( —c)b = ")
1.2.3.2.5.6 (2 0)4(—c)*=210(2 b)*(—c)®*=3360 dics. Ans.

rth term =

EXERCISES
Find each of the following indicated terms.
5th term of (a+z)*. 7. 6th term of (,+l)“_
6th term of (z —y)s.
7th term of (2+1)°. 8. 9th term of ( )

10th term of (m —n),
6th term of (a? —b2)1o,
. 20th term of (1+4z)*. 10. 4th term of (2V2—V/3)s,

165. Proof of the Binomial Theorem. The way in which
the binomial formula was established in § 163 is, strictly
speaking, open to objection because we there made sure of .
its correctness only for certain special values of n, such as
n=2, n=3, n=4, and n==5. Though the formula holds

9. 5th term of (— —ﬂ)".
y =z

P okt
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true, as we saw, in these cases, it does not follow necessarily
that it is true in every case, that is for every positive inte-
gral value of n. We can now establish' this fact, however,
by the process of mathematical induction, when n is a positive
integer.

Let m represent any special value of n for which the formula
has been established (as, for example, 2, 3, 4,0r 5). Then we

have
(a+z)m= a"‘+ma""“x+7—n—(m—1—)a’"—2x2+ ..
m(m— 1) - (m—r+2)
Let us now multiply both members of this equation by
a+z. On the left we obtain (a+x)™+. On the right we
shall have the sum of the two results obtained by multiply-
ing the right side of (1) first by a and then by z, that is.
we shall have the sum of the two following expressions :

(1 +

um—rf-lxhl_*_ .. '+$E".

am{-l+7namx+’%_l_). m—lx2+__,
m(im—1) .- (m—r+2)

T2 3o

m—r+2xr—l + cee +axmr

and

amz+mam1g? 4 m(r;z 21)3 (z’: r)—l— 3)a""'+’x"‘

+ - +maxm™4-xmH.
Adding these, and making the natural simplifications in
the resulting coefficients of am™z, a™x?, etc., and equating

the final result to its equal on the left (namely (a+z)™*, as
noted above) gives

(a+x)mH=amH14 (m+1)amz+ (m+ l)ma""“x’-i-

2) +(m+l)m (m—r+‘3)

m—r4-2p0r—1 m+l_
). 2.3 (r—1) ~a ety SRERE o 4
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But (2) is precisely (1) except for the substitution of m+1
for m throughout. Hence, if the binomial formula holds
for any special value of n, as m, it necessarily holds for the
next larger value, namely m+1. But we have already ob-
served that it holds when n»=5. It must, therefore, hold when
n=>5+1, or 6. But if it holds when n=6, it must likewise
hold when n=6+1, or 7. Thus we may proceed until we
arrive at any chosen value of n whatever. That is, the for-
mula must be true for any positive integral value of n.

*166. The Binomial Formula for Fractional and Negative Ex-
ponents. In case the exponent n is not a positive integer but is
fractional or negative, we may still write the expansion of (a+z)"
by the formula of § 163, but it will now contain indefinitely many
terms instead of coming to an end at some definite point, that is
we meet with an infinite series. (Compare § 92.)

For example, the formula gives

(a +.’C)1/2 =ql/? +§a1”‘l:c +§(21 21)a1/1~2:,;2 +'i Il— 1)(2‘;2) al/2-33 e

=al/2+l —1/2I+z( I a—a/2xz+'3j( Il)(_}) a=5/2g3 4.t

=ql/? +_% a~/2r — % a—a/zxz +T'6‘ a~5253 4.

Here we have written only the first four terms of the expansion,
but we could obtain the 5th term in the same way and as many
others in their order as might be desired.

*167. Application. If in (a+z)" the value of = is small in ecom-
parison to that of a (more exactly, if the numerical value of z/a is
less than 1) then the first few terms of the expansion furnish a
close approximation to the value of (a+=z). This fact is often
used to find approximate values for the roots of numbers in the
manner illustrated below.

ExampLe. Find the abproximate value of V10.

SoLuTioN. Write V10=v09+1=+V(32+1) and expand this
last form by the binomial formula. Thus (using the final result
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in the worked example of § 166), we have

VE =(341p= (3:)1.':+%(3:)—1_! -1 _%(3:)—:/: .12

. +14 (32 13 4...
0 PN E e

2-3 8-3 16- 3¢

=3 +.166666 — .004629 +-.000257 = 3.162288 (approximately).

Observe that the value of V10 as given in the tables is 3.16228,
thus agreeing with that just found so far as the first five places of
decimals are concerned.

Whenever extracting roots by this process we use the following
general rule.

Separate the given number into two parts, the first of which is the
nearest perfect power of the same degree as the required root, and ez-
pand the result by the binomial theorem.

*EXERCISES

Write the first four terms in the expansion of each of the following
expressions.

1. (a+x)%3, 6. (2a+b)ss
2. (a+2) 6. (a*—z%)—3/,
3. (1+2)'8, 7. V2%z.
4 (2-2)7A, 8. Vata.

9. Find the 6th term in the expansion of (a+z)!2.
"[HinT. Use the formula in § 164, viith n=% and r=6.]

Find the

10. 5th term of (a+z)!”. 13. Oth term of (a—z)~%.
11. 7th term of (a+z)2/. 14. 10th term of V(z +y)*.
12. 8th term of (1+4x)!/3. 15. 6th term of V2 a+b.

Find the approximate values of the following to six decimal
places and compare your results for the first three examples with
those given in the tables.

16. V17. 17. V27. 18. V0.
19. V14. 20. V35.

[HinT. Write 14=16—-2=2¢—-2.]



CHAPTER XXIII
THE SOLUTION OF EQUATIONS BY DETERMINANTS

168. Definitions. The symbol

a b
¢ d

is called a determinant of the second order, and is defined
as follows:

a b
c dl—ad—bc.
Thus
8 3
9 4 =8-4—2-3=32—-6=26.
7 3
j a7 a-(-2) -3=28+6=34,
4\ —10 6|=4[(-10) - 5—(—3) - 6]=4[—50+18]
-3 5 =4(—32)=—128.

The numbers a, b, ¢, and d are called the elements of the
determinant.

The elements a and d (which lie along the diagonal through
the upper left-hand corner of the determinant) form the
principal diagonal. The letters b and ¢ (which lie along the
diagonal through the upper right-hand corner) form the

minor diagonal.
265

4
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From these definitions, we have the following rule.

To evaluate any determinant of the second order, subtract
the product of the elements in the minor diagomal from the
product of the elements in the principal diagonal.

EXERCISES
Evaluate each of the following determinants.
b ez
% |y af ™ H4b 6o
s |77 _gl- 8. %ii‘?y’ i-

169. Solution of Two Linear Equations. Let us consider
a system of two linear equations between two unknown
letters, x and y. Any such system is of the form

1) axz+by=c,

) az+by=c,,

where ay, by, ¢, etc., represent known numbers (coefficients).
This system may be solved for z and y by elimination, as

in Chapter VII. Thus, multiplying (1) by b. and (2) by b

and then subtracting the resulting equations from each other,

the letter y is eliminated and we reach the equation

(albﬂ - azbl)x =boc1 — biCa.
Therefore
b1 —bice

3 = 2207 0iC2
( ) * arbys —ah,

Likewise, we may eliminate z by multiplying (1) by a. and
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(2) by a1 and subtracting the resulting equations from each
other. This gives
(a1b2 — agb1)y = @103 — azC1.
Therefore
4 . = Q10— a201_
( ) y a1be — azby

It is now clear, by § 168, that the numerators and denomi-
nators in (3) and (4) are all determinants of the second order ;
and by the definition of § 168, (3) and (4) may be written
respectively in the forms

a b a G

(5) T= do bl y= A0 Gl
[+ b]_ ! ay bl
a b a; b,

These forms for the solution of (1) and (2) are easily re-
membered. In particular, observe that :

1. The determinant for the denominator is the same for
both z and y.

2. The determinant for the numerator of the z-value is the
same as that for the denominator except that the numbers
¢ and ¢, replace the a, and a; which occur in the first column
of the denominator determinant.

3. The determinant for the numerator of the y-value is
the same as that for the denominator except that the num-
bers ¢; and ¢, replace the b, and b, which occur in the second
column of the denominator determinant.

The usefulness of the forms (5) lies in the fact that they
express the solution of a system of two linear equations in
condensed form, enabling us to write down the desired values
of x and y immediately, without the usual process of elimina-
tion. This will now be illustrated.
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ExaMpPLE. Solve by determinants the system

(6) ' 2z4+3y=18,
) z—T7y=-8.
Sorution. Using the forms (5), we have at once
18 3| .
oo =8 _18: (-7)—(=8)-3_—126+24_ —102 _¢
- 2 3\ 2(-7)-1-3 -14-3 -17 )
| 1
l 2 18
_1l 1 -8l _2.(-8-1.18_-16-18_-34_,
y 2 I 2(-7)-1-3 -14-3 -17
| 1 =7

The solution desired is therefore (z=6, y=2). Ans.

CHECK. Substituting 6 for z and 2 for y in (6) and (7) gives
1246 =18 and 6 —14 = —8, which are true results.

EXERCISES

Solve each of the following pairs of equations by determi-
nants, checking your answers for each of the first three.

{6x+5y 3, TiY_61

8:v+3y=—7 6. {3'8 ¥
4x+3y 14 7 {ax+by=r,
3z+8y=0, " lbz—ay=s

8 {2z—9y=—1L
-9y=- Jazt2by_

" { =3 y+3, 8 b ’
Zr+iy=16. a,x—lly‘ =b.

5. 2 a+.5b=30, a
4a—.8b=—16.
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*170. Determinants of the Third Order. The symbel

a b o
a; by ¢
as ba C3

1)

is called a determinant of the third order.
Its value is defined as follows: !

2) a1b2c3 +biC2as + 1203 —ashaci —bscea1 — c3a3b1.

This expression, as we shall see presently, is important in the
study of equations.

The expression (2) is called the expanded form of the determinant
(1). It is important to observe that this expanded form may be
written down at once as follows.

Write the determinant with the first two columns repeated at
the right and first note the three diagonals which then run down
from left to right (marked +). The
product of the elements in the first of ¥ + +
these diagonalsis a b; c;, and thisisseen to
be the first term of the expanded form (2).

Similarly, the product of the elements in

the second of these diagonals is bic.as,

which forms the second term of (2); and

likewise the third diagonal furnishes at Fig. 78.
once the third term of (2).

Next consider the three diagonals which run up from left to right
(marked with dotted lines). The product of the elements in the first
of these is a3 b; ¢1, and this is the fourth term of (2), provided it be
taken negatively, that is preceded by the sign —. Similarly, the
other two dotted diagonals of (3) furnish the last two terms of (2),
provided they be taken negatively.

Note. Every determinant of the third order when expanded
contains a total of siz terms.

ExamprLe. Expand and find the value of the determinant
3 79

21 4
6 3 2
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SoruTioN. Repeating the first and second columns at the right,
we have .
3 7
21
6 3

The diagonals rumning down from left to right give the three
products

3 79
21 4
6 3 2

3-1-2, 7-4-6, 9-2-3,

which form the first three terms of the expansion.
The diagonals running up from left to right give the products

6-1-9, 3-4-3, 2-2.7,

which, when taken negatively, form the three remaining terms of the
determinant.
The complete expanded form of (3) is, therefore,

3-1-24+7-4-64+9-2-3-6-1-9-3-4-3-2.2.7,
which reduces to
64168454 —54—-36—-28=110. Ans.

* EXERCISES
Expand and find the value of the following determinants.

1 3 7 z 7 1
1. |2 4 6| 6. |2 3 -4}
3 5 -4 4 2 1
-7 2 2 a b 2
2. 3 -4 6| 6. |—4 5 3|
8 -5 -3 210
8 2 3 a b ¢
3. 16 0 5| 7. (d e f}
3 0 7 T Yy z
2a 3 6b 1 0
4, |13a 2 -—-5b| 8. |0 z—y O
a 0 -2b 0 0 =z+4y
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*171. Solution of Three Lincar Fquations. Let us consider a sys-
tem of threo linear equations between three unknown letters, such
as z, ¥, and z. Any such system is of the form

ax+by+ciz=d,
a2z by +c2z =ds,
ayx+bsy +csz=ds,

where ay, by, 1, d1, as, b, ete., represent known numbers (coefficients).

This system may be solved for z, y, and z by elimination, asin § 35,
but the process is long. We shall here state merely the results,
which are as follows (compare with (3) and (4) of § 169) :

dibscs +dobsci +dsbics — dsbacy — dabscs —dabics
@1bacs +asbsci +ashics —ashacy —aibscs —asbics’
@ _1dsCs +aadscr +-aadics —asdacs —a1dscs —a;dlcg’
@1b2Cs +asbsci +asbic: —asbsci —a1bscs —ashics
— 1byds +asbsds +asbids —asbad, —arbsds —asbid,,
a1bacs +ashsci4ashics —ashecy —arbscs —ashice

1)

z=

It is clear by § 170 that in these values for z, y, and 2, each nu-
merator and denominator is the expanded form of a determinant of
the third order. In fact, it appears from the definition in § 170,
that we may now express these values of z, y, and z in the following
condensed (determinant) forms :

di by o a; di ¢ ay b d,

d: by c2 a; dy c a: by d

_ d; bs Cs = as ds Cs 2= as b8 dl

@) z= ay by ¢l y ar by ool ar b o
as by cg a; by ¢ az by ¢

as by c3 as bs c¢s as bs ¢

The importance of these expressions for z, y, and z lies in the fact
that they give at once the solution of any system such as (1) in
very compact and easily remembered forms. The following features
should be especially noted :

1. The denominator determinant is the same in all three cases.
(Compare statement 1 of § 169.)

2. The determinant for the numerator of the z-value is the same
as that for the denominator determinant except that the numbers
d,, d,, d; replace the ai, as, a; which occur in the first column of the
denominator determinant.
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3. Similarly, the numerator of the y-value is formed from that
of the ‘
the elements d,, ds, numerator of the z-value is {c.
from that of determinant by replacing the third
column by the elements d,, d;, ds. (Compare statements 2 and 3
of § 169.)

The readiness with which (3) may be used in practice to solve a
system of three linear equations is illustrated by the following

ExampLE. Solve the system

I2z—y+3 2=35,
z4+3y—156=-22,
3z+4y=1.

SoruTiON. Arranging the equations as in (1) of § 171, the given
system is

2z—y+32=35,
z+3y+22=15,
3z+4y+0z=1.
Therefore, using (3) of § 171, we have at once
35 -1 3
15 3 2
11 4 0l _0+180-2-9-280-0_—111_
ST 1 3 T 0+12-6-27-16-0  —g7 ~> (170
1 3 2
3 4 0
2 35 3
1 15 2
y——3 1 0l _0434210-185-4-0_74 _ _,
2 -1 3 -37 =37 ’
1 3 2
3 4 0
2 -1 35
1 3 15
2= 3 4 1 =6+l40—45—315—120+1=—333=9
2 -1 3 -37 -37 :
1 3 2
3 4 0
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The desired solution is, therefore, (x =3, y= —2, 2=9). Ans.
CHECkK. Withz =3, y= —2,2=9, it is readily seen that the three
given equations are satisfied.

* EXERCISES

Solve each of the following systems by determinants.

r—2y+z=5, ( z4+2y=0,
1. 3xz4+6y—42=3, 5. ]’ z+z= -3,
({82-10y+32=34. \4dyt+z—-2z=4.
z—y+2=2,
2 { z+y+2=6, §+§=7,
2z43y—4z="7.
6. (4427,
{2x—3y—4z=25, : 5 3
3 zty—z=—4, .Y
3z+y+2z=4. . 2+4 8.
4x—-6y+2z= -9, z+y=3a,
4 3z4+2y—2=2, 7 {x+z=5b,
2z—-y+z=1. y+z=2c¢.

*172. Determinants of Higher Order. Determinants of the
fourth order exist and are studied in higher algebra, as are deter-
minants of the fifth order, sixth order, etc. Moreover, determi-
nants of the fourth order bear a similar relation to the solving of
four linear equations between four unknown letters, as determinants
of the third order bear to the solving of three linear equations be-
tween three unknown letters; and a similar remark may be made
regarding determinants of the fifth order, sixth order, ete. In all
cases, the solutions of such systems of equations can be expressed
very simply by means of determinants.






APPENDIX
TABLE OF POWERS AND ROOTS
ExpranatioN

1. Square Roots. The way to find square roots from the
Table is best understood from an example. Thus, suppose
we wish to find V1.48. To do this we first locate 1.48 in
the column headed by the letter n. We find it near the
bottom of this column (next to the last number). Now
we go across on that level until we get into the column
headed by Vn. We find at that place the number 1.21655.
This is our answer. That is, V1.48=1.21655 (approxi-
mately). : ‘

If we had wanted V'14.8 instead of V' 1.48 the work would
have been the same except that we would have gone over
into the column headed V10 n (because 14.8=10X1.48).
The number thus located is seen to be 3.84708, which is,
therefore, the desired value of V'14.8.

Again, if we had wished to find V' 148 the work would take
us back again to the column headed V'n, but now instead
of the answer being 1.21655 it would be 12.1655. In other
words, the order of the digits in V148 is the same as for
V'1.48, but the decimal point in the answer is one place
farther to the right.

Similarly, if we desired V1480 the work would be the same
as before except that we must now use the column headed
V10 n and move the decimal point there occurring one place
farther to the right. This is seen to give 38.4708.

Thus we see how to get the square root of 1.48 or any
power of 10 times that number.

e
o
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In the same way, if we wish to find V.148, or V.0148,or
Vv.00148, or the square root of any number obtained by
dividing 1.48 by any power of 10 we can get the answers
from the column headed Vn or V10n by merely placing
the decimal point properly. Thus, we find that V148 =
.384708, V/.0148 = .121655, V/.00148 = .0384708, etc.

What we have seen in regard to the square root of 1.48
or of that number multiplied or divided by any power of 10
holds true in a similar way for any number that occurs in
the column headed n, so that the tables thus give us the
square roots of a great many numbers.

2. Cube Roots. Cube roots are located in the tables
in much the same way as that just described for square
roots, but we have here three columns to select from instead
of two, namely the columns headed V'n, V10 n, V100 n.

Illustration.

¥ 1.48 occurs in the column headed \’/E_a_.nd is seen to be 1.13960.

¥/14.8 occurs in the column headed ¥/i0n and is seen to be 2.4552.

Y148 occurs in the column headed V1007 and is seen to be
5.28957.

I 3
To get Y148 we observe that .148 = -\3/1—1? = \’1%% = -1—16\/3 148.

Thus, we look up V148 and divide it by 10. The result is instantly
seen to be .528057. Similarly, to get V.0148 we observe that

38 8114 R — .
¥.0148 = ‘/IT:S - 1‘3—63 - Tld ¥14.8. Thus, we look up ¥/14.8 and

divide it by 10, giving the result .24552.
s Y 50Ta8 = /188 _ 1 VTaE s
To get v.00148 we observe that v.00148 1000 10 1.48, so

that we must divide V1.48 by 10. This gives .11396.

Similarly the cube root of any number occurring in the
column headed n may be found, as well as the cube root of
any number obtained by multiplying or dividing such a
number by any power of 10.
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3. Squares and Cubes. To find the square of 1.48 we
naturally look at the proper level in the column headed n2.
Here we find 2.1904, which is the answer. If we wished the
square of 14.8 the result would be the same except that
the decimal point must be moved two places to the right,
giving 219.04 as the answer. Similarly the value of (148)2
is 21904.0 etc.

On the other hand, the value of (.148)? is found by moving
the decimal place two places to the left, thus giving .021904.
Similarly, (.0148)? = .00021904, etc.

To find (1.48)° we look at the proper level in the column
headed n* where we find 3.24179. The value of (14.8)% is
the same except that we must move the decimal point three
places to the right, giving 3241.79. Similarly, in finding
(.148)* we must move the decimal place three places to the
left, giving .00324179.

Further illustrations of the way ‘to use the tables will be
found in § 43.

EXERCISES

Read off from the tables the values of each of the following ex-
Ppressions.

1. V4l 4. V670 7. V037 10. v.00154
2. V&9 6. V.89 8. V037 11. V.000143
3. V67 6. V.016 9. V00154 12. ¥.000143



278 Table I — Powers and Roots
n? vn

1.0000 1.00000 2.15443 4.64159

1.0201 1.00499 3.17805 1.03030 1.00332 2.16159 4.65701
1.0404 1.00095 3.19374 1.06121 1.00662 2.16870 4.67233
1.0609 1.01489 3.20936 1.09273 1.00990 2.17577 4.68755

1.0816 1.01980 3.22490 1.12486 1.01316 2.18279 4.70267
1.1025 1.02470 3.24037 1.15762 1.01640 2.18076 4.71769
1.1236  1.02956 3.25576 1.19102 1.01961 2.19669 4.73262

1.1449 1.03441  3.27109 1.22504 1.02281 2.20358 4.74746
1.1664 1.03923 3.28634 1.25971  1.02599 2.21042 4.76220
1.1881 1.04403 3.30151 1.29503 1.02014 2.21722 4.77686

1.2100 1.04881 3.31662 1.33100 1.03228 2.22398 4.79142

1.2321 1.05357 3.33167 1.36763 1.03540 2.27°070 4.80590
1.2544 1.05830 3.34664 1.40493 1.03850 2.23738 4.82028
1.2769  1.06301 3.30155 1.44200 1.04158 2.24402 4.83459

1.2996 1.06771 3.37639 1.48154 1.04464 2.25062 4.84881
1.3225 1.07238 3.39116 1.52088 1.047G9 2.25718 4.8G294
1.3456 1.07703 3.40588 1.56090 1.05072 2.26370 4.87700

1.3689 1.08167 3.42053 1.60161 1.05373 2.27019 4.89097
1.3924 1.08628 3.43511 1.64303 1.05672 2.27664 4.90487
1.4161 1.09087 3.44964 1.68516 1.03970 2.28305 4.91868

1.4400 1.09545 3.46410 1.72800 1.06266 2.28943 4.93242

1.4641 1.10000 3.47851 1.77156 1.06560 = 2.20577 4.94609
1488t 1.1045¢ 3.49285 1.81585 1.C6853 2.30208 4.95968
1.5129 110905 38.50714 1.86087 1.07144 2.30835 4.97319

1.5376 1.11355 3.52136 1.90662 1.07434 2.31459 4.98663

1.5625 1.11803 3.53553 1.93312 1.07722 2.32079 5.

1.5876 1.12250 3.54965 2.00038 1.08008 2.32697 5.01330
5

16129 112604 3.56371 2.04838 1.08203 2.33311 5.
1.6384 1.13137 3.57771 2.097156 1.08577 2.33921 5.03968
1.6641 1.13578 3.59166 2.14669 1.08859 2.34529 5.05277

1.6900 1.14018 3.60555 2.19700 1.09139 2.35133 b5.06580

1.7161 1.14455 3.61939 2.24809 1.04418 2.35735 b5.07875
1.7424  1.14801 3.63318 2.29907 1.0069% 2.36333 5.09164
1.7689 1.15326 3.64692 2.35264 1.09972 2.36928 b5.10447

1.7956 1.15758 3.66060 2.40610 1.10247 2.37521 5.11723
1.8225 1.16190 3.67423 2.46038 1.10521 2.38110 b5.12993
1.8496 1.16619 3.68782 2.51546 1.10793 2.38697 5.14256

1.8769 1.17047 3.70135 2.57135 1.11064 2.39280 b5.15514
1.9044 1.17473 3.71484 2.62807 1.11334 2.39861 5.16765
1.9521 117898 3.72827 2.68562 1.11602 2.40439 5.18010

1.9600 1.18322 3.74166 2.74400 2.41014 5.19249

1.9881 1.18743 3.75500 2.80322 1.12135 2.41587 5.20483
2.0164 1.10164 3.76829 2.86329 1.12399 2.42156 b5.21710
2.0449 1.19583 3.78153 2.92421 1.12662 242724 5.22932

2.0736 1.20000 3.79473 2.98598 1.12024 2.43288 5.24148
2.10256 1.20416 3.80789 3.04862 1.13185 2.43850 5.25359
2.1316  1.20830 3.82099 3.11214 1.13445 2.44409 5.26564

21609 1.21244 3.83406 3.17652 1.13703 2.449%66 5.27763
2.1904 1.21655 = 3.84708 3.24179 1.13960 2.45520 5.28957
2.2201 1.22066 3.86005 3.3079% 11ANG 24812 §.30146

-
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n n? vn |VI0n| n? VYn | ¥10n |¥/100
1.50 2.2500 | 1.22474 | 3.87298 | 3.37500 | 1.14471 | 2.46621 | 5.31329
1.51 2.2801 | 1.22882 | 3.88587 | 3.44295 | 1.14725 | 2.47168 | 5.32607
1.52 2.3104 | 1.23288 | 3.89872 | 3.51181 | 1.14978 | 2.47712 | 5.33680
1.53 2.3109 | 1.23693 | 3.91152 | 3.58158 | 1.15230 | 2.48255 | 5.34848
1.54 | 2.3716 | 1.24097 | 3.92428 | 3.65226 | 1.15480 | 2.48794 | 5.36011
1.55 2.4025 | 1.24499 | 3.93700 | 3.72388 | 1.15729 | 2.49332 | 5.37169
1.56 2.4336 | 1.24900 | 3.94968 | 3.79642 | 1.15978 | 2.49867 | 5.38321
1.57 2.4649 | 1.25300 | 3.96232 | 3.86989 | 1.16225 | 2.50399 | 5.39469
1.58 2.4964 | 1.25698 | 3.97492 | 3.94431 | 1.16471 | 2.50930 | 5.40612
1.59 2.5281 | 1.26095 | 3.98748 | 4.01968 | 1.16717 | 2.51458 | 5.41750
1.60 2.5600 | 1.26491 | 4.00000 | 4.09600 | 1.16961 | 2.51984 | 5.42884
1.61 2.5921 | 1.26886 | 4.01248 | 4.17328 | 1.17204 | 2.52508 | 5.44012
1.62 2.6244 | 1.27279 | 4.02492 | 4.25153 | 1.17446 | 2.53030 | 5.45136
1.63 | 2.6569 | 1.27671 | 4.03733 | 4.33075 | 1.17687 | 2.53549 | 5.46256
1.64 | 2.6896 | 1.28062 | 4.04969 | 4.41094 | 1.17927 | 2.54067 | 5.47370
1.65 2.7225 | 1,28452 | 4.06202 | 4.49212 | 1.18167 | 2.54582 | 5.48481
1.66 | 2.7556 | 1.28841 | 4.07431 | 4.57430 | 1.18405 | 2.55095 | 5.49586
-1.67 2.7889 | 1.29228 | 4.08656 | 4.65746 | 1.18642 | 2.55607 | 5.50688
1.68 2.8224 | 1.29615 | 4.09878 | 4.74163 | 1.18878 | 2.56116 | 5.51785
1.69 2.8561 | 1.30000 | 4.11096 | 4.82681 | 1.19114 | 2.56623 | 5.52877
1.70 2.8900 | 1.30384 | 4.12311 | 4.91300 | 1.19348 | 2.57128 | 5.53966
1.71 2.9241 | 1.30767 | 4.13521 | 5.00021 | 1.19582 | 2.57631 | 5.55050
1.72 2.9584 | 1.31149 | 4.14729 | 5.08845 | 1.19815 | 2.58133 | 5.56130
1.73 | 2.9929 | 1.31529 | 4.15933 | 5.17772 | 1.20046 | 2.58632 | 5.57205
1.74 | 3.0276 | 1.31909 | 4.17133 | 5.26802 | 1.20277 | 2.59129 | 5.58277
1.75 3.0625 | 1.32288 | 4.18330 | 5.35938 | 1.20607 | 2.59625 | 5.59344
1.76 | 3.0976 | 1.32665 | 4.19524 | 5.45178 | 1.20736 | 2.60118 | 5.60408
177 3.1329 | 1.33041 | 4.20714 | 5.54523 | 1.20964 | 2.60610 | 5.61467
1.78 3.1684 | 1.33417 | 4.21900 | 5.63975 | 1.21192 | 2.61100 | 5.62523
1.79 | 3.2041 | 1.33791 | 4.23084 | 5.73534 | 1.21418 | 2.61588 | 5.63574
1.80 3.2400 | 1.34164 | 4.24264 | 5.83200 | 1.21644 | 2.62074 | 5.64622
1.81 3.2761 | 1.34536 | 4.25441 | 5.92974 | 1.21869 | 2.62559 | 5.65665
1.82 3.3124 | 1.34907 | 4.26615 | 6.02857 | 1.22093 | 2.63041 | 5.66705
1.83 3.3489 | 1.35277 | 4.27785 | 6.12849 | 1.22316 | 2.63522 | 5.67741
1.84 | 3.3856 | 1.35647 | 4.28952 | 6.22950 | 1.22539 | 2.64001 | 5.68773
1.85 3.4225 | 1.36015 | 4.30116 | 6.33162 | 1.22760 | 2.64479 | 5.69802
1.86 | 3.4596 | 1.36382 | 4.31277 | 6.43486 | 1.22981 | 2.64954 | 5.70827
1.87 | 3.4969 | 1.36748 | 4.32435 | 6.53920 | 1.23201 | 2.65428 | 5.71848
1.88 3.5344 | 1.37113 | 4.33590 | 6.64467 | 1.23420 | 2.65901 | 5.72865
1.89 3.5721 | 1.37477 | 4.34741 | 6.75127 | 1.23639 | 2.66371 | 5.73879
1.90 3.6100 | 1.37840 | 4.35890 | 6.85900 | 1.23856 | 2.66840 | 5.74890
1.91 3.6481 | 1.38203 | 4.37035 | 6.96787 | 1.24073 | 2.67307 | 5.75897
1.92 3.6864 | 1.38664 | 4.38178 | 7.07789 | 1.24289 | 2.67773 | 5.76900
1.93 | 3.7249 | 1.38924 | 4.39318 | 7.18906 | 1.24505 | 2.68237 | 5.77900
1.94 | 3.7636 | 1.39284 | 4.40454 | 7.30138 | 1.24719 | 2.68700 | 5.78896
1.95 | 3.8025 | 1.39642 | 4.41588 | 7.41488 | 1.24933 | 2.69161 | 5.79889
1.96 | 3.8416 | 1.40000 | 4.42719 | 7.52954 | 1.25146 | 2.69620 | 5.80879
1.9 3.8809 | 1.40357 | 4.43847 | 7.64537 | 1.25359 | 2.70078 | 5.81865
1.98 | 3.9204 | 1.40712 | 4.44972 | 7.76239 | 1.25571 | 2.70534 | 5.82848
1.99 3.9601 | 1.41067 | 4.46094 | 7.88060 | 1.25782 | 2.70989 | 5.83827
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n nt va | VIOn| =n® ¥Yn | V10n |¥100
2.00 4.0000 | 1.41421 | 4.47214 | 8.00000 | 1.25992 | 2.71442 | 5.84804
2.01 4.0401 | 1.41774 | 4 48330 | 8.12060 | 1.26202 | 2.71898 | b5.85777
2.02 4.0804 | 1.42127 | 4.49444 | 8.24241 | 1.26411 | 2.72344 | 5.86746
2.03 4.1209 | 1.42478 | 4.50555 | 8.36543 | 1.26619 | 2.72792 | 5.87713
2.04 4.1616 | 1.42829 | 4.51664 | 8.48966 | 1.26827 | 2.73239 | 5.88677
2.056 4.2025 | 1.43178 | 4.52769 | 8.61512 | 1.27033 | 2.73685 | 5.89637
2.06 4.2436 | 1.43527 | 4.53872 | 8.74182 | 1.27240 | 2.74129 | 5.90594
2.07 4.2849 | 1.43875 | 4.54973 | 8.86974 | 1.27445 | 2.74572 | 5.91548
2.08 4.3264 | 1.44222 | 4.56070 | 8.99891 | 1.27650 | 2.75014 | 5.92499
2.09 4.3681 | 1.44568 | 4.57165 | 9.12933 | 1.27854 | 2.75454 | 5.93447
2.10 4.4100 | 1.44914 | 4.58258 | 9.26100 | 1.28058 | 2.75892 | 5.94392
2.11 4.4521 | 1.45258 | 4.59347 | 9.39393 | 1.28261 | 2.76330 | 5.95334
2.12 4.4944 | 1.45602 | 4.604353 | 9.52813 | 1.28463 | 2.76766 | 5.96273
2.13 4.5369 | 1.45945 | 4.61519 | 9.66360 | 1.28665 | 2.77200 | 5.97209
2.14 4.5796 | 1.46287 | 4.62601 | 9.80034 | 1.28866 | 2.77633 | 5.98142
2.15 4.6225 | 1.46629 | 4.63681 | 9.93838 | 1.29066 | 2.78065 | 5.99073
2.16 4.6656 | 1.4696Y | 4.64758 | 10.0777 | 1.29266 | 2.78495 | 6.00000
2.17 4.7089 | 1.47309 | 4.65833 | 10.2183 | 1.29465 | 2.78924 | 6.00925
2.18 4.7524 | 1.47648 | 4.66905 | 10.3602 | 1.29664 | 2.79352 | 6.01846
2.19 4.7961 | 1.47986 | 4.67974 | 10.5035 | 1.29862 | 2.79779 | 6.02765
2.20 4.8400 | 1.48324 | 4.69042 | 10.6480 | 1.30059 | 2.80204 | 6.03681
2.21 4.8841 | 1.48661 | 4.70106 | 10.7939 | 1.30256 | 2.80628 | 6.04594
2.22 4.9284 | 1.48997 | 4.71169 | 10.9410 | 1.30452 | 2.81050 | 6.05505
2.23 4.9729 | 1.49332 | 4.72229 | 11.0896 | 1.30648 | 2.81472 | 6.06413
2.24 5.0176 | 1.49666 | 4.73286 | 11.2394 | 1.30843 | 2.81892 | 6.07318
2.25 5.0625 | 1.50000 | 4.74342 | 11.3906 | 1.31037 | 2.82311 | 6.08220
2.26 5.1076 | 1.50333 | 4.756395 | 11.5432 | 1.31231 | 2.82728 | 6.09120
2.27 5.1529 | 1.50665 | 4.76445 | 11.6971 | 1.31424 | 2.83145 | 6.10017
2.28 5.1984 | 1.50997 | 4.77493 | 11.8524 | 1.31617 | 2.83560 | 6.10911
2.29 5.2441 | 1.51327 | 4.78539 | 12.0090 | 1.31809 | 2.83974 | 6.11803
2.30 5.2900 | 151658 | 4.79583 | 12.1670 | 1.32001 | 2.84387 | 6.12693
2.31 5.3361 | 1.51987 | 4.80625 | 12.3264 | 1.32192 | 2.84798 | 6.13579
2.32 5.3824 | 1.52315 | 4.81664 | 12.4872 | 1.32382 | 2.85209 | 6.14463
2.33 5.4289 | 1.52643 | 4.82701 | 12.6493 | 1.32572 | 2.85618 | 6.15345
2.34 5.4756 | 1.52971 | 4.83735 | 12.8129 | 1.32761 | 2.86026 | 6.16224
2.35 5.5226 | 1.53297 | 4.84768 | 12.9779 | 1.32950 | 2.86483 | 6.17101
2.36 5.5696 | 1.53623 | 4.85798 | 13.1443 | 1.33139 | 2.86838 | 6.17975
2.37 5.6169 | 1.53948 | 4.86826 | 13.3121 | 1.33326 | 2.87243 | 6.18846
2.38 5.6644 | 1.54272 | 4.87852 | 13.4813 | 1.33514 | 2.87646 | 6.19715
2.39 5.7121 | 1.54596 | 4.88876 | 13.6519 | 1.33700 | 2.88049 | 6.20582
2.40 5.7600 | 1.54919 | 4.890898 | 13.8240 | 1.33887 | 2.88450 | 6.21447
241 5.8081 | 1.56242 | 4.90918 | 13.9975 | 1.34072 | 2.88850 | 6.22308
2.42 5.8564 | 1.65563 | 4.91935 | 14.1725 | 1.34257 | 2.89249 | 6.23168
243 5.9049 | 1.55885 | 4.92950 | 14.3489 | 1.34442 | 2.89647 | 6.24025
2.44 5.9536 | 1.56205 | 4.93964 | 14.5268 | 1.34626 | 2.90044 | 6.24880
245 6.0025 | 1.56525 | 4.94975 | 14.7061 | 1.34810 | 2.90439 | 6.25732
2.46 6.0516 | 1.56844 | 4.95984 | 14.8869 | 1.34993 | 2.90834 | 6.26583
2.47 6.1009 | 1.57162 | 4.96991 | 15.0692 | 1.35176 | 2.91227 | 6.27431
2.48 6.1504 | 1.57480 | 4.97996 | 15.2530 | 1.35358 | 2.91620 | 6.28276
[ 249 | 6.2001 | 1.57797 | 4.939%0 | 15.4382 { 1.35540 | 2.92011 | 6.20119




Powers and Roots
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2.50 6.2500 | 1.58114 | 5.00000 | 15.6250 | 1.35721 | 2.92402 | 6.29961
2.51 6.3001 | 1.58430 | 5.00999 | 15.8133 | 1.35902 | 2.92791 | 6.30799
2.52 6.3504 | 1.58745 | 5.01996 | 16.0030 | 1.36082 | 2.93179 | 6.31636
2.53 6.4009 | 1.59060 | 5.02991 | 16.1943 | 1.36262 | 2.93567 | 6.82470
2.54 6.4516 | 1.59374 | 5.03984 | 16.3871 | 1.36441 | 2.93953 | 6.33303
2.55 6.5025 | 1.59687 | 5.04975 | 16.5814 | 1.36620 | 2.94338 | 6.34133
2.56 6.5536 | 1.60000 | 5.06964 | 16.7772 | 1.36798 | 2.94723 | 6.34960
2.57 6.6049 | 1.60312 | 5.06952 | 16.9746 | 1.36976 | 2.95106 | 6.35786
2.58 6.6564 | 1.60624 | 5.07937 | 17.1735 | 1.37153 | 2.95488 | 6.36610
2.59 6.7081 | 1.60935 | 5.08920 | 17.3740 | 1.37330 | 2.95869 | 6.37431
2.60 6.7600 | 1.61245 | 5.09902 | 17.5760 | 1.37507 | 2.96250 | 6.38250
2.61 6.8121 | 1.61555 | 5.10882 | 17.7796 | 1.37683 | 2.96629 | 6.39068
2.62 6.8644 | 1.61864 | 5.11859 | 17.9847 | 1.37859 | 2.97007 | 6.39883
263 | 69160 | 1.62173 | 512835 | 18.1914 | 1:38034 | 2.97385 | 6.40696
2.64 6.9696 | 1.62481 | 5.13809 | 18.3997 | 1.38208 | 2.97761 | 6.41507
2.65 7.0225 | 1.62788 | 5.14782 | 18.6096 | 1.38383 | 2.98137 | 6.42316
2.66 7.0756 | 1.63095 | 5.15752 | 18.8211 | 1.38557 | 2.98511 | 6.43123
2.67 7.1289 | 1.63401 | 5.16720 | 19.0342 | 1.38730 | 2.98885 | 6.43928
2.68 7.1824 | 1.63707 | 5.17687 | 19.2488 | 1.38903 | 2.99257 | 6.44731
2.69 7.2361 | 1.64012 | 5.18652 | 19.4651 | 1.39076 | 2.99629 | 6.45531
2.70 7.2900 | 1.64317 | 5.19615 | 19.6830 | 1.39248 | 3.00000 | 6.46330
2.71 7.3441 | 1.64621 | 5.20577 | 19.9025 | 1.39419 | 3.00370 | 6.47127
2.72 7.3984 | 1.64924 | 5.21536 | 20.1236 | 1.39591 | 3.00739 | 6.47922
2.73 7.4529 | 1.65227 | 5.22494 | 20.3464 | 1.39761 | 3.01107 | 6.48716
2.74 7.5076 | 1.65529 | 5.23450 | 20.5708 | 1.39932 | 3.01474 | 6.49507
2.75 7.5625 | 1.65831 | 5.24404 | 20.7969 | 1.40102 | 3.01811 | 6.50296
2.76 7.6176 | 1.66132 | 5.25357 | 21.0246 | 1.40272 | 3.02206 | 6.51083
277 7.6729 | 1.66433 | 5.26308 | 21.2539 | 1.40441 | 3.02570 | 6.51868
2.78 7.7284 | 1.66733 | 5.27257 | 21.4850 | 1.40610 | 3.02934 | 6.52652
2.79 7.7841 | 1.67033 | 5.28205 | 21.7176 | 1.40778 | 3.03297 | 6.53434
2.80 7.8400 | 1.67332 | 5.29150 | 21.9520 | 1.40946 | 3.03659 | 6.54213
2.81 7.8961 | 1.67631 | 5.30094 | 22.1880 | 1.41114 | 3.04020 | 6.54991
2.82 7.9524 | 1.67929 | 5.31037 | 22.4258 | 1.41281 | 3.04380 | 6.55767
2.83 8.008Y | 1.68226 | 5.31977 | 22.6652 | 1.41448 | 3.04740 {-6.56541
2.84 8.0656 | 1.68523 | 5.32917 | 22.9063 | 1.41614 | 3.05098 | 6.57314
2.85 8.1225 | 1.68819 | 5.33854 | 23.1491 | 1.41780 | 3.05456 | 6.58084
2.86 8.1796 | 1.69115 | 5.34790 | 23.3937 | 1.41946 | 3.05813 | 6.58853
2.87 8.2369 | 1.69411 | 5.35724 | 23.6399 | 1.42111 | 3.06169 | 6.59620
2.88 | 82941 | 1.69706 | 536636 | 23.8879 | 1.42276 | 3.06524 | 6.60385
2.89 8.3521 | 1.70000 | 5.37587 | 24.1376 | 1.42440 | 3.06878 | 6.61149
2.90 8.4100 | 1.70294 | 5.38516 | 24.3890 | 1.42604 | 3.07232 | 6.61911
291 8.4681 | 1.70587 | 5.39444 | 24.6422 | 1.42768 | 3.07584 | 6.62671
2.92 8.5264 | 1.70880 | 5.40370 | 24.8971 | 1.42931 | 3.07936 | 6.63429
2.93 8.5849 | 1.71172 | 5.41295 | 25.1538 | 1.43094 | 3.08287 | 6.64185
2.94 8.6436 | 1.71464 | 5.42218 | 25.4122 | 1.43257 | 3.08638 | 6.64940
2.95 8.7025 | 1.71766 | 5.43139 | 25.6724 | 1.43419 | 3.08987 | 6.65693
2.96 8.7616 | 1.72047 | 5.44059 | 25.9343 | 1.43581 | 3.09336 | 6.66444
2.97 8.8209 | 1.72337 | 5.44977 | 26.1981 | 1.43743 | 3.09684 | 6.67194
2.98 8.8804 | 1.72627 | 5.45894 | 26.4636 | 1.43904 | 3.10031 L6.67942
2.99 8.9401 | 1.72916 | 5.46809 | 26.7309 | 144005 | DAOWY | QRN \
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Powers and Roots

n?

vn

vion
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V10n

UL

9.0000

1.73205

5.47723

27.0000

1.44225

3.10723

6.69433

woo |9
383 252 88=2(8|®

9.0601
9.1204
9.1809

9.2416
9.3025
9.3636

9.4249
9.4864
9.5481

1.73494
1.73781
1.74069

1.74356
1.74642
1.74929

1.75214
1.75499
1.75784

5.486:35
5.49545
5.50454

5.51362
5.52268
5.63173

5.54076
5.54977
5.55878

27.2709
27.5436
27.8181

28.0945
28.3726
28.6526

28.9344
29.2181
29.5036

1.44385
144545
1.44704
1.44863
1.45022
1.45180
1.45338

1.45496
1.45653

3.11068
3.11412
3.11766

3.12098
3.12440
3.12781

3.13121
3.13461
3.13800

6.70176
6.70017
6.71657

6.72395
6.73132
6.73566

6.74600
6.75331
6.76061

9.6100

5.56776

29.7910

1.45810

3.14138

6.76790

(-]

GaR GhR

9.6721
9.7344
9.7969

9.8596
9.9225
9.9856

10.0489
10.1124
10.1761

1.76352
1.76635
1.76918

1.77200
1.77482
1.77764

1.78045
1.78326
1.78606

5.57674
5.58570
5.59464

5.60357
5.61249
5.62139

5.63028
5.639156
5.64801

30.0802
30.3713
30.6643

30.9591
31.2559
31.5545

31.8550
32.1574
32.4618

1.45967
1.46123

1.46279 .

1.46434
1.46590
1.46745

1.46899
1.47054
1.47208

3.16485
8.16817
3.17149

6.77517
6.78242
6.78966

6.79688
6.80409
6.81128

6.81846
6.82562
6.83277

10.2400

1.78885

5.65685

32.7680

1.47361

3.17480

6.83990

8R(8(8%s

10.3041
10.3684
10.4329

10.4976
10.5625
10.6276

10.6929
10.7584
10.8241

1.79165
1.79444
1.79722

5.66569
5.67450
5.68331

5.69210

.| 5.70088

5.70964

5.71839
5.72713
5.73585

33.0762
33.3862
33.6983

34.0122
34.3281
34.6460

34.9658
35.2876
35.6113

1.47515

3.17811
3.18140
3.18469

3.18798
3.19125
3.194562

3.19778

3.20104 -

3.20429

6.84702
6.85412
6.86121

6.86829
6.87534

6.88942
6.89643
6.90344

HEER LR

10.8900

5.74456

35.9370

3.20753

6.91042

@«
-

10.9561
11.0224
11.0889

11.1556
11.2225
11.2896

11.3569
11.4244
11.4921

36.2647
36.5944
36.9260

37.2507
37.5954
37.9331

38.2728
38.6145
38.9582

3.21077
3.21400
3.21722

3.22044
3.22365
3.22686

*8.23006

3.23325
3.23643

6.91740
6.92436

6.93130

6.93823
6.94515
6.95205

6.95804
6.97268

11.5600

39.3040

3.23961

6.97953

00 w0 [P (005900 000t et |Pcme wee o
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11.6281
11.6964
11.7649

11.8336
11.9025
11.9716

12.0409
12.1104
12.1801

39.6518
40.0017
40.3536

40.7076
41.0636
41.4217

41.7819
42.1442
42.5085

3.24278
3.24595
3.24911

3.25227
3.25542
3.25856

3.26169
3.26482
AN

6.98637
6.99319
7.00000

7.00680
7.01358
7.02033

7.02711 |
7.04058 |
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n3
12.2500

12.3201
12.3904
12.4609

12.5316
12.6025
12.6736

12.7449
12.8164
12.8881

12.9600

13.0321
13.1044
13.1769

13.2496
13.3225
13.3956

13.4689
13.5424
13.6161

13.6900

13.7641
13.8384
13.9129

13.9876
14.0625
14.1376

14.2129
14.2884
14.3641

14.4400

14.5161
14.5924
14.6689

14,7450
14.8225
14.8996

14.9769
15.0544
15.1321

15.2100

15.2881
15.3664
15.4449

15.5236
15.6025
15.6816

15.7609
15.8404
15.9201

Powers and Roots

1.87350
1.87617
1.87883

1.88149
1.88414
1.88680

1.88944
1.89209
1.80473

1.89737

1.90000
1.90263
1.90526

1.90788
1.91050
1.91311

1.91572
1.91833
1.92094

1.92354

1.92614
1.92873
1.93132

1.93391
1.93649
1.93907

1.94165
1.94122
1.94679

1.94936

1.95192
1.95418
1.95704

1.95959
1.96214
1.96469

1.96723
1.96977
1.97231

1.97484

1.97737
1.97990
1.98242

1.98494
1.98746
1.98997

1.99249
1.99499

5.93453

5.94138

5.94979
5.95819
5.96657
5.97495
5.98531
5.99166
6.00000

6.00833
6.01664
6.02495

6.03324
6.04152
6.04979

6.05805

6.07434
6.08276

6.09098
6.09918
6.10737

6.11555

6.13188

6.14003
6.14817
6.15630

6.16441

6.17252
6.18061
6.18870

6.19677

6.21289

6.22093
6.22806
6.23699

6.24500
6.25300

6.26897

6.276%
6.28490
6.29285

6.30079
6.30872
6.31664

43.2436
43.6142
43.9870
44.3619
44.7389
45.1180

45.4903
45.8827
46.2683

46.6560

47.0459
47.4379
47.8321

48.2285
48.6271
49.0279

49.4309
49.8360
50.2434

50.6530

51.0648
51.4788
51.8951

52.3136
52.7344
53.1574

53.5826
54.0102
54.4399

54.8720

55.3063
55.7430
56.1819

56.6231
57.0666
57.5125

57.9606
58.4111
58.8639

59.3190

59.77658
60.2363
60.6985

61.1630
61.6299
62.0991

62.5708
63.0448

1.51974
1.52118
1.52262

1.52406
1.525649
1.52692

1.52835
1.52978
1.53120

1.53262
1.53404

1
1.53827

154109

1.54249
1.564389
1.54529

1.564668

Vion

3.27T107

3.27418
3.27729
3.28039

3.28348
3.28657
3.28965

g 29273
3'29837

3.30193

3 30498
3.20803
3.31107

8.31411
3.31714
3.32017

8.82319
3.32621
3.32922

8.33222

3.33522
3.33822
3.34120

3.34419
3.34716
3.35014

3.35310
3.35607
3.35902

3.36198

3.36492
3.36786
3.37080

3.37373
3.37666
3.37958

3.38249
3.38540
3.38831

3.39121

3.39411
3.39700
3.39988

3.40277
3.40664
3.40851

3.41138

283

7.04730

7.056400
7.06070
7.06738

36192
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16.0000

16.0801
16.1604
16.2409

16.3216
16.4025
16.4836

16.5649
16.6464
16.7281

16.8100

- 16.8921

16.9744
17.0569

17.1396
17.2225
17.3056

17.3889
17.4724
17.5561

17.6400

17.7241
17.8084
17.8929

17.9776
18.0625
18.1476

18.2329
18.3184
18.4041

18.4900

18.5761
18.6624
18.7489

18.8356
18.9225
19.0096

19.0969
19.1844
19.2721

19.3600

19.4481
19.5364
19.6249

19.7136
19.8025
19.8916

19.9809
20.0704
20.1601

Powers and Roots

2.00260
2.00499
2.00749

2.00998
2.01246
2.01494

2.01742
2.01990
2.02237

2.02485

2.02731
2.02978
2.03224

2.03470

2.03961
2.04206

2.04695
2.04939
2.05183

2.05670

2.05913
2.06155
2.06398

2.06610
2.06882
2.07123
2.07364

2.07605

2.08087
2.08327

2.08806
2.09045

2.09523
2.09762
2.10000

2.10476

2.10713
2.10950
2.11187

2.11424
2.11660
2.11896

6.33246
6.34035
6.34823

6.35610
6.36396
6.37181

6.37966
6.38749
6.39531

6.40312

6.41093
6.41872
6.42651

6.43428
6.44205

6.44981
6.45785 '

6.46529
6.47302

6.43074

6.48845
6.49615
6.50384

6.51153
6.51920

6.52687

064.4812
64.9648
65.4508

65.9393
66.4301
66.9234

67.4191
67.9173
68.4179

68.9210

85.1840
85.7661

86.9383

87.5284
88.1211
88.7165

89.3146
89.9154

1.58872
1.59004
1.59136

1.59267
1.59399
1.59530

1.59661
1.59791
1.59922

1.60052

1.60182
1.60312
1.60441

1.60571
1.60700
1.60829

1.60958
1.61086
1.61215

1.61343

1.61471
1.61599
1.61726

1.61853
1.61981
1.62108

1.62234
1.62361

1.62613
1.62739
1.62865
1.62991
1.63116

1.63241
1.63366

1.63491
1.63619
1.63740

1.63864

1.63988
1.64112
1.64236

1.64359
1.64483
1.64606

1.64729
1.64851
1.64974

Vion
3.41995

3.42280
3.42564

3.42848

3.43131
3.43414
3.43697

3.43979

3.44541
3.44822
3.45102

3.45661

3.45939
3.46218
3.46496

3.46773
3.47050
8.47321

3.47603

3.47878
3.4815%
3.48428

3.48703

3.49250

3.49523
3.49796
3.50068

3.50340
3.60611

3.51153

3.51423
3.516u2
3.51962

3.52231
3.52499
3.52767

3.53035
3.53302

353835
3.54101

3.54632

3.54807
3.55162
3.55426

7.37420

7.54784

7.56369
7.55953
7.56535

7.67117
7.57658
7.68279

7.58858
7.59436
7.60014

7.60590

7.61166
7.61741
7.62315

7.62888
7.63461
7.64032

7.64603
7.65172
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Powers and Roots 285

n? Vi0n
20.2500 3.55689 7.66309

20.3401 2.12368 6.71565 91.7339 1.65219 3.55953 7.66877
20.430+ 2.12603 6.72309 92.3454 1.65341 3.56215 7.67443
20.5209 2.12838 6.73053 92.9597 1.65462 3.56478 7.68009

20.6116 2.13073 6.73795 93.5767 1.65884¢ 3.56740 7.68573
20.7025 2.13307 6.74537 94.1964 1.65706 3.57002 7.69137
20.7936 2.13542 6.75278 94.8188 1.65827 3.57263 7.69700

20.8849 2.13776 6.76018 95.4440 1.65948 3.575624 7.70262
20.9764 2.14009 6.76757 96.0719 1.66069 3.57785 7.70824
21.0681 2.14243 6.77495 96.7026 1.66190 3.58045 7.71384

21.1600 2.14476 6.78233 97.3360 1.66310 3.58305 7.71944

21.2521 2.14709 6.78970 97.9722 1.66431 3.5856% = 7.72503
21.3444 2.14942 6.79706 98.6111 1.66551 3.58523 7.73061
21.4369 2.15174 6.80441 99.2528 1.66671 3.59082 7.73619

21.5206 2.15407 6.81175 99.8973 1.66791 3.59340 7.74175
21.6225 2.15639 6.81009 100.545 1.06011 3.59598 7.74731
21.7156 2.15870 6.82642 101.195 1.67030 3.59856 7.75286

21.8089 2.16102 6.83374 101.848 1.67150 3.60113 7.75840
21.9024 2.16333 6.84105 102.503 1.67269 8.60370 7.7639%4
21.9961 2.16564 6.84836 103.162 1.67388 3.60626 7.76946

22.0900 2.16795 6.85565 103.823 1.67507 3.60883 7.77498

22.1841 2.17025 6.86294 104.487 1.67626 3.61138 7.78049
222784 2.17256 6.87023 105.154 1.67744 3.6139%4 7.78599
22.3729 2.17486 6.87700 105.824 1.67863 3.61649 7.79149

224676 2.17715 6.88477 106.496 1.67981 3.61903 7.79697
22.5625 2.17945 6.89202 107.172 1.68099 3.62158 7.80245
22.6576 2.18174 6.89928 107.850 1.68217 3.62412 7.80798

22,7529  2.18403 6.90652 108.531 1.68334 3.62665 7.81339
22.8484 2.18632 6.91375 109.215 1.68452 3.62019 7.81885
22.9441 2.18861 6.92098 109.903 1.68569 3.63172 7.82429

23.0400 2.19089 6.92820 110.592 1.68687 3.63424 T7.82974

23.1361 2.19317 6.03542 111.285 1.68804 3.62676 7.83517
23.2324 2.19545 6.94262 111.980 1.68020 3.63028 7.84059
23.3289 2.19773 < 6.94982 112.679 1.69037 3.6i180 7.84601

23.4256 2.20000 6.95701 113.380 1.69184 38.64431 7.85142
23.5225 . 2.20227 6.96419 114.084 1.69270 3.64G82 7.85683
23.6196 2.20454 6.97137 114.791 1.69386 3.64932 7.

23.7169 2.20681 6.97834 115.501 1.69503 3.65182 7.86761
23.8144 2.20907 6.98370 116.214 1.69619 3.65432 7.87299
23.9121 221133 6.99285 116.930 1.69734 3.65G81 7.87837

24.0100 2.21359 T7.00000 117.649 1.69850 3.65931 7.88374

24.1081 2.21585 7.00714 118.371 1.69965 3.66179 7.88909
24.2064 221811 7.01427 119.098 1.70081 3.66428 7.80445
24.3049 2.22036 7.02140 119.823 1.70196 3.66676 7.89979

24.4036 2.22261 7.02851 120.554 1.70311 3.66924 7.90513
24.5025 2.22486 17.03562 121.287 1.70426 3.67171 7.91046
24.6016 2.22711 7.04273 122.024 1.70540 3.67418 7.91578

24.7009 2.22935 7.04982 122.763 1.70655 3.67665 7.92110
24.8004 7.05691 123.506 1.70769 3.67911 ;92641



2

Powers and Roots

n n? va |VIOn| n* | Vn | V10n |V100n)
5.00 | 25.0000 | 2.23607 | 7.07107 | 125.000 | 1.70998 | 3.68403 | 7.93701
5.01 | 25.1001 [ 2.23830 | 7.07814 | 125.752 | 1.71112 | 3 68649 | 7.94229
5.02 | 252004 | 2.24054 | 7.08520 | 126.506 | 1.71225 | 3.68894 | 7.94757
5.03 | 25.3009 | 2.24277 | 7.09225 | 127.264 | 1.71339 | 3.69138 | 7.95285
5.04 | 25.4016 | 2.24499 | 7.09930 | 128.024 | 1.71452 | 3.69383 | 7.95811
5.05 | 25.5025 | 2.24722 | 7.10634 | 128.788 | 1.71566 | 3.69627 | 7.96337
5.06 | 25.6036 | 2.24944 | 7.11337 | 129.554 | 171679 | 8.69871 | 7.96863
5.07 | 25.7049 | 2.25167 | 7.12039 | 130.324 | 1.71792 | 3.70114 | 7.97387
508 | 25.8061 | 223389 | 7.12741 | 131.007 | 1.71905 | 8.70367 | 7.97911
5.09 | 25.0081 | 225610 | 7.13442 | 131.872 | 1.72017 | 3.70600 | 7.98434
5.10 | 26.0100 | 2.25832 | 7.14143 | 132.651 | 1.72130 | 3.70843 | 7.98957
511 | 26.1121 | 2.26053 | 7.14843 | 133.433 | 1.72242 | 3.71085 | 7.99479
512 | 252144 | 2.25274 | 7.15542 | 134.218 | 172355 | 3.71327 | $.00000
513 | 26.3169 | 2.26495 | 7.16240 | 135.006 | 1.72467 | 8.71669 | 8.00520
514 | 26.4196 | 2.26716 | 7.16938 | 135.797 | 1.72579 | 3.71810 | 8.01040
515 | 26.5225 | 2.26036 | 7.17635 | 136591 | 1.72691 | 3.72051 | 8.01559
5.16 | 26.6256 | 2.27156 | 7.18331 | 137.388 | 1.72802 | 3.72292 | 8.02078
5.17 | 26.7289 | 2.27376 | 7.19027 | 138.188 | 1.72914 | 8.72532 | 8.02596
518 | 26.8324 | 2.27506 | 7.19722 | 158.992 | 1.73025 | 372772 | 8.03113
5.19 | 26.9361 | 2.27816 | 7.20417 | 130.798 | 1.73137 | 3.73012 | 8.03629
5.20 | 27.0400 | 2.28035 | 7.21110 | 140.608 | 1.73248 | 3.73251 | 8.04145
521 | 27.1441 | 2.28254 | 7.21803 [ 141.421 | 1.73359 | 3.73400 | 8.04660
5.22 | 27.2484 | 2.28473 | 7.22496 | 142.237 | 1.73470 | 3.73729 | 8.05175
523 | 27.3529 | 2.28692 | 7.23187 | 143.056 | 1.73580 | 3.73968 | 8.05689
5.24 | 27.4576 | 2.28910 | 7.23878 | 143.878 | 1.73691 | 3.74206 | 8.06202
525 | 27.5625 | 2.20129 | 7.24569 | 144.703 | 1.73801 | 3.74443 | -8.06714
5.26 | 27.6676 | 2.29347 | 7.25259 | 145532 | 1.73912 | 3.74681 | 8.07226
527 | 27.7729 | 2.29565 | 7.258 | 146.363 | 1.74022 | 3.74918 | 8.07737
5.28 | 27.8784 | 2.20783 | 7.26636 | 147.198 | 1.74132 | 3.75155 | 8.08248
5.29 | 27.9841 | 2.30000 | 7.27324 | 148.036 | 1.74242 | 3.75392 | 8.08758
5.30 | 28.0000 | 2.30217 | 7.28011 | 148.877 | 1.74351 | 3.75629 | 8.09267
5.31 | 28.1061 | 2.30434 | 7.28607 | 149.721 | 1.74461 | 3.75865 | 8.09776
5.32 | 28.3024 | 2.30651 | 7.29383 | 150.569 | 1.74570 | 3.76101 | 8.10284
5.33 | 28.4089 | 2.30868 | 7.30068 | 151.419 | 1.74680 | 3.76336 | 8.10791
5.34 | 28.5156 | 2.31084 | 7.30753 | 152.273 | 1.74789 | 3.76571 | 8.11298
5.35 | 28.6225 | 2.31301 | 7.31437 | 153.130 | 1.74898 | 3.76506 | 8.11804
5.36 | 28.7296 | 2.31517 | 7.32120 | 153.991 | 1.75007 | 3.77041 | 8.12310
5.37 | 28.8360 | 2.31733 | 7.32803 | 154.854 | 1.75116 | 3.77275 | 8.12814
5.38 | 28.0441 | 2.31948 | 7.33485 | 155.721 | 1.75224 | 3.77509 | 8.13319
5.39 | 29.0521 | 2.32164 | 7.34166 | 156.591 | 1.75333 | 3.77743 | 8.13822
5.40 | 20.1600 | 2.32379 | 7.34847 | 157.464 | 1.75441 | 3.77976 | 8.14325
541 |29.2681 | 2.32504 | 7.35527 | 158.340 | 1.75549 | 3.78200 | 8.14828
542 | 20.3764 | 2.32809 | 7.36206 | 159.220 | 1.75657 | 3.78442 | 8.15329
5.43 | 20.4849 | 2.33024 | 7.36885 | 160.103 | 1.75765 | 3.78675 | 8.16831
544 | 29.50% | 2.33238 | 7.37564 | 160.989 | 1.75873 | 3.78907 | 8.16331
545 | 29.7025 | 2.33452 | 7.38241 | 161.879 | 1.75981 | 3.79139 | 8.16831
546 | 29.8116 | 2.33666 | 7.38918 | 162.771 | 1.76088 | 3.79871 | 8.17330
5.47 | 29.9209 | 2.33880 | 7.39594 | 163.667 | 1.76196 | 3.79603 | 8.17829
5.48 | 30.0304 | 2.310 | 7.40270 | 164.567 | 1.76303 | 3.79%34 | 8.18327
5.49 [ 30.1401 | 2:34307 | 7.40045 | 165.469 | 1630 |\ IHUKS | 8.188%4




n

5.51
5.52
5.53

. b.54
5.56
5.57
5.59

5.60
5.61
5.63
5.64
5.
5.67
5.69

5.70
5.71
573
5.74

5.76

32.1489

32 3761 '

32.4900

32.6041
32.7184
32.8329

32.9476
33.0625
33.1776

33.2929

33.4084
33.5241

33.6400

33.7561
33.8724
33.9889

34.1056
34.2225
34.3396

34.4569
34.5744
34.6921

' 34.8100

34.9281
35.0464
35.1649

. 35.2836
' 35.4025

35.5216

35.6409
35.7604
35.8801

Powers and Roots

7.42294
7.42967
7.43640

7.44312
7.44983
7.45654
7.46324

7.46994
7.47663

7.48331
7.48999

7.49667

7.50333 |

7.50999

7.51665
7.52330

7.52994
7.53658
7.54321

7.54983

7.55645

7.56307
7.56968

7.57628
7.58288
7.58947

7.59605
7.60263
7.60920

7.61577

7.62234
7.62889
7.63544

7.64199
7.64853
7.65506

7.66159
7.66812
7.67463

7.68115 |

7.68765
7.6M415
7.70065

7.70714

7.72658

7.73305

7.73951

172.809
173.741
174.677

175.616

205.379

206.425
207.475
208.528

209.585
210.645
211.709

212.776
213.847
214422

1.80390
1.80492
1.80595

1.80697

1.80799
1.80901
1.81003

1.81104
1.81206
1.81307

1.81409
1.81510
136\

3.84174
3.84399
3.84625

3.84850

3.850756
3.85300
3.85624

3.85748
3.85972
3.86196

3.86419
3.86642
3.86865

3.87088

3.87310
3.87532
3.87754
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8.19321

8.19818
8.20313
8.20808

' 8.21303

8.21797
8.22290

8.36821

8.37297
8.37772
8.38247

' 8.38721

8.39194

8.40140

8.40612
8 41083
8.41564

| 8.42025

8.42494
VAL



288 Powers and Roots
n n? van | VIOn| nd ¥Yn | Vion V100
6.00 36.0000 | 2.44949 | 7.74597 | 216.000 | 1.81712 | 3.91487 | 8.43433
6.01 36.1201 | 2.45153 | 7.75242 | 217.082 | 1.81813 | 3.91704 | 8.43901
6.02 2404 | 2.45357 | 7.75887 | 218.167 | 1.81914 | 3.91921 | 8.44369
6.03 36.3609 | 2.45561 | 7.765631 | 219.256 | 1.82014 | 3.92138 | 8.44836
6.04 36.4816 | 2.46764 | 7.77174 | 220.349 | 1.82115 | 3.92355 | 8.45303
6.08 86.6025 | 2.459G7 | 7.77817 | 221.445 | 1.82215 | 3.92571 | 8.45769
6.06 | 36.7236 | 2.46171 | 7.78460 | 222.545 | 1.82316 | 3.92787 | 8.46235
6.07 | 35.8449 | 2.46374 | 7.79102 | 223.649 | 1.82416 | 3.93003 | 8.46700
6.08 | 36.966% | 2.46577 | 7.79744 | 224.766 | 1.82516 | 3.93219 | 8.47165
6.09 37.0881 | 2.46779 | 7.80385 | 225.867 | 1.82616 | 3.93434 | 8.47629
6.10 | 37.2100 | 2.46982 | 7.81025 | 226.981 | 1.82716 | 3.93650 | 8.48003
6.11 37.3321 | 2.47184 | 7.81665 | 228.099 | 1.82816 | 3.93865 | 8.48556
6.12 37.4544 | 2.47386 | 7.82304 | 229.221 | 1.82915 | 3.94079 | 8.49018
6.13 | 87.5769 | 2.47588 | 7.82943 | 230.346 | 1.83015 | 3.94294 | 8.49481
6.14 | 87.6996 | 2.47790 | 7.83582 | 231.476 | 1.83115 | 3.94508 | 8.49942
6.15 37.8228 | 2.47992 | 7.84219 | 232.608 | 1.83214 | 3.94722 | 8.50403
6.16 9456 | 2.48193 | 7.84857 | 233.745 | 1.83313 | 3.94936 | 8.50864
6.17 | 38.0689 | 2.48395 | 7.85493 | 234.885 | 1.83412 | 8.95150 | 8.51324
6.18 38.1924 | 2.48596 | 7.86130 | 2306.029 | 1.83511 | 3.95363 | 8.51784
6.19 38.3161 | 2.48797 | 7.86766 | 237.177 | 1.83610 | 3.95576 | 8.52243
6.20 38.4400 | 2.48998 | 7.87401 | 238.328 | 1.83709 | 3.95789 | 8.52702
6.21 38.5641 | 2.49199 | 7.88036 | 239.483 | 1.83808 | 3.96002 | 8.53160
6.22 38.6884 | 2.49399 | 7.88670 | 240.642 | 1.83906 | 3.96214 | 8.53618
6.23 | 38.8129 | 2.49600 | 7.89303 | 241.804 | 1.84005 | 3.96427 | 8.54075
6.24 38.9376 | 2.49800 | 7.89937 | 242.971 | 1.84103 | 8.96638 | 8.54532
6.25 39.0525 | 2.50000 | 7.90569 | 244.141 | 1.84202 | 3.96850 | 8.54988
6.26 39.1876 | 2.50200 | 7.91202 | 245.314 | 1.84300 | 3.97062 | 8.55444
6.27 | 89.3129 | 2.50400 | 7.91833 | 246.492 | 1.84398 | 3.97273 | 8.55899 |
6.28 39.4384 | 2.50599 | 7.92465 | 247.673 | 1.84496 | 3.97484 | 8.56354
6.29 39.5641 | 2.50799 | 7.93095 .868 | 1.84594 | 3.97695 | 8.56808
6.30 39.6900 | 2.50998 | 7.93725 | 250.047 | 1.84691 | 3.97906 | 8.57262
6.31 | 39.8161 | 2.51197 | 7.94355 | 251.240 | 1.84789 | 3.98116 | 8.57715
6.32 39.9424 | 2.51396 | 7.94984 | 252.436 | 1.84887 | 3.98326 | 8.58168
6.33 40.0689 | 2.51595 | 7.95613 | 253.636 | 1.84984 | 3.98536 | 8.58620
6.31 | 40.1956 | 2.51791 | 7.96241 | 254.840 | 1.85082 | 3.98746 | 8.59072 |
6.35 40.3225 | 2.51992 | 7.96869 | 256.048 | 1.85179 | 3.98956 | 8.59524
6.36 | 40.4496 | 2.52190 | 7.97496 | 257.259 | 1.85276 | 3.99165 | 8.59975
6.37 | 40.5769 | 2.52389 | 7.98123 | 258.475 | 1.85373 | 3.99374 | 8.60425
6.38 40.7044 | 2.52587 | 7.98749 | 259.694 | 1.85470 | 3.99583 | 8.60875
6.39 40.8321 | 2.52784 | 7.99375 | 260.917 | 1.85567 | 3.99792 | 8.61325
6.40 40.9600 | 2.52982 | 8.00000 | 262.144 | 1.85664 | 4.00000 | 8.61774
6.41 41,0881 | 2.53180 | 8.00625 | 263.375 | 1.85760 | 4.00208 | 8.62222
6.42 41.2164 | 2.53377 | 8.01249 | 264.609 | 1.85857 | 4.00416 | 8.62671
6.43 41.3449 | 2.53574 | 8.01873 | 265.848 | 1.85953 | 4.00624 | 8.63118
6.4 41.4736 | 2.53772 | 8.02496 | 267.090 | 1.86050 | 4.00832 | 8.63566
6.45 41,6025 | 2.53969 | 8.03119 | 268.336 | 1.86146 | 4.01039 | 8.64012
6.46 41.7316 | 2.54165 | 8.03741 | 269.586 | 1.86242 | 4.01246 | 8.64459
647 | 41.8609 | 2.54362 | 8.04363 | 270.840 | 1.86338 | 4.01453 | 8.64904
41.9904 | 2.54558 | 8.04984 | 272.098 | 1.86434 | 4.01660 | 8.65350
La49 [ 42.1201 | 254755 | 8.05605 | 213369 \ 1886 | 401866 | 8.65795




6.50

6.51
6.72
6.63
6.54
6.55

6.57
6.5
6.59

6.60

6.61
6.62
6.63
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nl
42.2500

42,3801
42.5104
42.6409

42.7716
42.9025
43.0336

43.1649
43.2964
43.4281
43.5600

43.6921
43.8244
43.9569

44.0896
44.2225
44.3556

44.4889
44.6224
44.7561

44.8900

45.0241
45.1584
45.2929

45.4276
45.5625
45.6976

45.8329
45.9684
46.1041

46.2400

46.3761
46.5124
46.6489

46.7856
46.9225
47.0596

47.1969
47.3344
47.4721

47.6100

47.7481
47.8864
48.0249

48.1636
48.3025
48.4416

48.5809
48.7204
48.8601

U

Powers and Roots

2.55147
2.55343
2.565539

2.65734
2.55930
2.56125

2.56320
2.506515
2.56710

2.56905

2.57099
2.57294
2.57488

2.57682
2.57876
2.58070

2.568263
2.58457
2.58650

2.58844

2.59037
2.59230
2.59422

2.59615
2.59808
2.60000

2.60192
2.60384
2.60376

2.60768
2.60960
2.61151
2.61343
2.61534
2.61725
2.61916
2.62107

2.62298
2.62488

2.62679

2.62869
2.63059
2.63249

2.63439
2.63629
2.63818

2.64008

8.06846
8.07465
8.08034

8.08703

8.09321

8.09938

8.10555
8.11172
8.11788

8.12404

8.13019
8.13634
8.14248

8.14862
8.15475
8.16088

8.16701
8.17313
8.17924

8.18535

8.19146
8.19756
8.20366

8.20975
8.21584
8.22192

8.22800
8.23108
8.24015

8.24621

8.25227
8.23833
8.26438

8.27043
8.27647
8.28251

8.28855
8.20458
8.30060

8.30662

8.31264
8.31865
8.32466
8.33067
8.33667
8.34266
8.34865
8.35464

2715.84
217.168
278.445

279.726
281.011
282.300

283.593
284.890
286.191

287.496

288.805
200.118
291.434

292.755
204.080
295.408

206.741
298.078
299.418

300.763

302.112
303.464
304.821

306.182
307.647

' 308.916

310.289
311.666
313.047

314.432

315.821
317.216
318.612

320.014
321.419
322.829

324.2143

325.661
327.083

328.509

329.939
331.374
332.813

334.255
335.702
337.1564

338.609
340.068

. 841.532

1.87578

1.87672
1.87767
1.87862

1.87956
1.88050
1.88144

1.88239
1.88333

1 1.88427

1.88520

| 1.88614

1.88708
1.88801

1.88895
1.88488
1.89081

1.89175
1.80268
1.89361

1.80454

Vion
4.02073

4.02279
4.02485
4.02690

4.02896
4.03101
4.03306

4.03511
4.037156
4.03920
4.04124

4.04328
4.04532
4.04735

4.04939
4.05142

4.05345

4.05548
4.05750
4.05953

4.06155

4.06357
4.06559
4.06760

4.06961
4.07163
4.07364

4.07564
4.07765
4.07965

4.08166

4.08365
4.08565
4.08765

4.08964
4.09163
4.09362

4.09561
4.09760
4.09958

4.10157

4.10355
4.10552
4.10750

4.10M8
4.11145
4.11342

4.11539
4.11736
4.11932
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8.66239

8.66683
8.67127
8.67570

8.68012
8.68465
8.68896

8.60338
8.69778
8.70219

8.70659

8.71537
8.71976
8.72414
8.79852
8.73289

8.73726
8.74162
8.74598

8.75034
8.75469

8.75004
8.76338

8.76772

8.83656

8.84082
8.84509
8.84934

8.85360
8.85785
8.86210

8.86634
8.87058
8.87481



290 Powers and Roots

n " | .va'|vion| n Vn | Vion |V100%
7.00 | 49.0000 { 2.64575 | 8.36660 | 343.000 | 1.91293 | 4.12129 | 8.87904
7.01 49.1101 | 2.64764 | 8.37257 | 344.472 | 1.91384 | 4.12325 | 8.88327
7.02 49.2804 | 2.64053 | 8.37854 | 345.048 | 1.91475 | 4.12521 | 8.88749
7.03 49.4209 | 2.65141 | 8.38451 | 347.429 | 1.91566 | 4.12716 | 8.89171
7.04 40.5616 | 2.65330 | 8.39047 | 348.914 | 1.91657 | 4.12912 | 8.89592
7.05 49.7025 | 2.65518 | 8.39643 | 350.403 | 1.91747 | 4.13107 | 8.90013
7.06 49,8436 | 2.65707 | 8.40238 | 351.896 | 1.91838 | 4.13303 | 8.90434
7.07 49.9849 | 2.65805 | 8.40833 | 353.303 | 1.91929 | 4.13498 | 8.90854
7.08 50.1264 | 2.66083 | 8.41427 | 354.805 | 1.92019 | 4.13093 | 8.91274
7.09 50.2681 | 2.66271 | 8.42021 | 356.401 | 1.92109 | 4.13887 | 8.91GY3
7.10 50.4100 | 2.66458 | 8.42615 | 357.911 | 1.92200 | 4.14082 | 8.92112
7.11 50.5521 | 2.66646 | 8.43208 | 359.425 | 1.92200 | 4.14276 | 8.92531
7.12 50.6944 | 2.665833 | 8.43801 | 360.944 | 1.92380 | 4.14470 | 8.92949
713 50.8369 | 2.67021 | 8.44393 | 302.467 | 1.92470 | 4.14664 | 8.93367
7.14 50.9796 | 2.67208 | 8.44985 | 363.994 | 1.92560 | 4.14858 | 8.93784
7.15 51.1225 | 2.67395 | 8.43577 | 365.526 | 1.92650 | 4.16052 | 8.94201
7.16 51.2656 | 2.67582 | 8.461G8 | 367.062 | 1.92740 | 4.15245 { 8.94618
7.17 51.4089 | 2.67769 | 8.46759 | 368.602 | 1.92829 | 4.15438 | 8.95034
7.18 51.5524 | 2.67955 | 8.47349 | 370.146 | 1.92919 | 4.15631 | 8.95450
7.19 51.6961 | 2.68142 | 8.47939 | 371.695 | 1.93008 | 4.15824 | 8.97866
7.20 | 51.8400 | 2.68328 | 8.48528 | 873.248 | 1.93098 | 4.16017 | 8.96281
7.21 51.9841 | 2.68514 | 8.49117 | 374.805 | 1.93187 | 4.16G209 | 8.96696
7.22 52.1284 | 2.68701 | 8.49706 | 376.367 | 1.93277 | 4 16402 | 8.97110
7.23 52.2729 | 2.68887 | 8.50294 | 377.933 | 1.93366 , 4.16594 | 8.97624
7.24 52.4176 | 2.60072 | 8.50882 | 379.503 | 1.93455 | 4.16786 | 8.97938
7.25 52.5625 | 2.69258 | 8.51469 | 331.078 | 1.93544 | 4.16978 | 8.98351
7.26 | 52.7076 | 2.69444 | 8.52056 | 382.657 | 1.93633 | 4.17169 | 8.98764
727 52.8529 | 2.69629 | 8.52643 | 384.241 | 1.93722 | 4.17361 | 8.99176
7.28 52.0084 | 2.69815 | 8.53220 | 385.828 | 1.93810 | 4.175562 | 8.99588
7.29 53.1441 | 2.70000 | 8.53815 | 387.420 | 1.93599 | 4.17743 | 9 00000
7.830 53.2000 | 2.70185 | 8.54100 | 380017 | 1.93988 | 4.17934 | 9.00411
7.31 53.4361 | 2.70370 | 8.54985 | 390.618 | 1.94076 | 4.18125 | 9.00822
7.32 53.5824 | 2.70555 | 8.55570 | 392.223 | 1.94165 | 4.18315 | 9.01233
7.33 53.7289 | 2.70740 | 8.56154 | 393.833 | 1.91253 | 4.18506 | 9.01643
7.34 | 53.8756 | 2.70924 | 8.56738 | 395.447 | 1.04341 | 4.18696 | 9.02053
7.35 54.0225 | 2.71109 | 8.57321 | 397.065 | 1.94430 | 4.18886 | 9.02462
7.36 54.1696 | 2.71293 | 8.57904 | 398.688 | 1.94518 | 4.19076 | 9.02871
7.37 54.3109 | 2.71477 | 8.58487 | 400.316 | 1.94606 | 4.19266 | 9.03280
7.38 54.4644 | 2.71662 | 8.59069 | 401.947 | 1.94G94 | 4.19455 | 9.03689
7.39 54.6121 | 2.71846 | 8.59651 | 403.583 | 1.94782 | 4.19644 | 9.04097
7.40 54.7600 | 2.72029 | 8.60233 | 405.224 | 1.94870 | 4.19834 | 9.04504
741 54.9081 | 2.72213 | 8.60814 | 406.869 | 1.04957 | 4.20023 | 9.04911
742 55.0504 | 2.72307 | 8.61394 | 408.518 | 1.95045 | 4.20212 | 9.05318
743 55.2049 | 2.72680 | 8.61974 | 410.172 | 1.95132 | 4.20400 | 9.05725
744 55.3636 | 2.72764 | 8.62554 | 411.831 | 1.95220 | 4.20589 | 9.06131
7.45 55.50025 | 2.7247 | 8.63134 | 413.494 | 1.95307 | 4.20777 | 9.06537
7.46 55.6516 | 2.73130 | 8.63713 | 415.161 | 1.95395 | 4.20065 | 9.06942
747 55.8009 | 2.73313 | 8.64202 | 416.833 | 1.95482 | 4.211563 | 9.07347
7.48 55.9504 | 2.73496 | 8.64870 | 418.509 | 1.95569 | 4.21341 | 9.07762
7.49 56.1001 | 2.73679 | 8.65448 | 420190 | 105G | 4.21529 | 9.08166
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n? Vion
56.2500 4.217T16  9.08360

56.4001 2.74044 8.66603 423.565 1.95830 4.21904 9.08964
56.5504 2.74226 8.67179 425.259 1.95917 422091 9.09367
56.7009 2.74408 8.67756 426.958 1.96004 4.22278 9.09770

56.8516 2.74501 8.68332 428.661 1.96091 4.22465 9.10173
57.0025 2.74773 ' 8.68907 430.369 1.96177 4.22651 9.10575
57.1536 2.74955 = 8.69483 432.081 1.96264 4.22838 9.10977

57.3049 2.75136 8.70057 433.798 1.96350 4.23024 9.11378
57.4564 2.73318 8.70632 435.520 1.96437 4.23210 9.11779
37.6081 2.75500 8.71206 437.245 1.96523 4.23396 9.12180

57.7600 2.75681 8.71780 438.976 1.96610 4.23582 9.12581

57.9121 2.75862 = 8.72353 440.711 1.96696 4.23768 9.12981
58.0644 2.76043 8.72926 442.451 1.96782 4.2395¢ 9.13380
58.2169 2.76225 8.73199 444.195 1.96868 4.24139 9.13780

58.3696 2.76405 8.74071 445944 1.96954 4.24324 9.14179
58.5225 2.76586 8.74613 447.697 1.97040 4.24509 9.14577

58.6756 216767 8.75214 449.455 1.07126 4.24604 9.14976
58.8289 2.76948 8.75785 451.218 1.97211 4.24879 9.15374
58.9624 2.77128 8.76356 452.085 1.97297  4.25063 9.15771
59.1361 2.77308 8.76926 454.757 1.97383 4.25248 ' 9.16169
59.2000 2.77459 8.77496 456.533 1.97463 4.25432 9.16566
59.4441 2.77669 8.78066 458.314 1.97554 4.25616 9.16962
59.5984 2.77819 8.78635 460.100 1.97639 4.25800 9.17359
59.7520 2.78029 8.79204 461.800 1.97724 4.25984 9.17754
59.9076 2.78209 8.79773 463.685 1.97809 4.26167 9.18150
60.0623 2.78388 8.80341 465.484 1.97895 4.26351 9.18545
60.2176 2.78368 8.80909 467.289 1.97980 4.26534 9.18940
60.3720 2.78747 8.81476 9.19335

:
3

9.19729
9.20123

469.097
60.5284 2.78027 8.82043 470.911
60.6841 2.79106 8.82610 472.729

60.8400 2.79285 8.83176 474.552 1.98319 4.27266 9.20516

1 60.9961 < 2.79464 8.83742 476.380 4.27448  9.20910
61.1524 2.70643 8.84308 478.212 1. 4.27631  9.21302
61.3089 2.79821 8.84873  480.049 1.985 4.27813  9.21695

1.98150

1.98234

1.98319

1.98404

1.98489

1.98573
61.4656 2.80000 8.85438 481.890 1.98658 4.27995 9.22087
61.6225 2.80179 8.86002 483.737 @ 1.98742 4.28177 9.22479
- 61.7796 2.80357 8.86366 485.588 = 1.98326 4.28359 9.22871
. 61.9369 2.80535 8.87130 487.443 ' 1.98911 4.28540 9.23262
© 62.0944 280713 8.87694 489.304 1.98095 4.28722 9.23653
62.2521 2.80891 8.88257 & 491.169 1.99079

1.99163

1.99247

1.99331

1.994156

1.99499

1.99582

62.4100 2.81069 8.88819 493.039

62.5681 2.81247 8.89382 494.914
62.7264 2.81425 8.89944 496.793
1 62.8849 < 2.81603 8.90505 498.677

63.0436 2.81780 8.91067 500.566

63.2025  2.81957 8.91628 502.460 1.9

63.3616  2.82135 8.92188 504.358 1.99666 4.30168 9.26768
997

1
63.5200 2.82312 ' 8.92749 506.262 1.99750 4.30348 9.27156

63.6804 2.82189 = 8.93308 508.170 1.

' 63.8401 2.82666 8.93868 510.082 1.

4.28003 9.24043
4.2008% 9.24434

4.29265 9.24823
4.20446 9.25213
4.29627 9.25602

4.20807  9.25991
4.29987  9.26380



292 Powers and Roots
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8.00 64.0000 | 2.82843 | 8.94427 | 512.000 | 2.00000 | 4.30887 | 9.28318
8.01 64.1601 | 2.83019 | 8.94986 | 513.922 | 2.00083 | 4.31066 | 9.28704
8.02 64.3204 | 2.83196 | 8.95545 | 515.850 | 2.00167 | 4.31246 | 9.29091
8.03 64.4809 | 2.83373 | 8.96103 | 517.782 | 2.00250 | 4.31425 20477
8.04 64.6416 | 2.83549 | 8.96660 | 519.718 | 2.00333 | 4.31604 | 9.29862
8.05 64.8025 | 2.83725 | 8.97218 | 521.660 | 2.00416 | 4.31783 | 9.30248
8.06 64.9636 | 2.83901 | 8.97775 | 523.607 | 2.00499 | 4.31961 | 9.30633
8.07 65.1249 | 2.84077 | 8.98332 | 525.558 | 2.00582 | 4.32140 | 9.31018
8.08 65.2864 | 2.84253 | 8.98888 | 527.514 | 2.00664 | 4.32318 | 9.31402
8.09 | 65.4481 | 2.84429 | 8.99444 | 529.475 | 2.00747 | 4.32497 | 9.31786
8.10 65.6100 | 2.84605 | 9.00000 | 531.441 | 2.00830 | 4.32675 | 9.32170
8.11 65.7721 | 2.84781 | 9.00655 | 533.412 | 2.00912 | 4.32853 | 9.32553
8.12 65.9344 | 2.84956 | 9.01110 | 535.387 | 2.00995 | 4.33031 | 9.32936
8.13 66.0969 | 2.85132 | 9.01665 | 537.368 | 2.01078 | 4.33208 | 9.33319
8.14 66.2596 | 2.85307 | 9.02219 | 539.358 | 2.01160 | 4.33386 | 9.33702
8.156 66.4225 | 2.85482 | 9.02774 | 511.343 | 2.01242 | 4.33563 | 9.34084
8.16 | 66.5856 | 2.85657 | 9.03327 | 543.338 | 2.01325 | 4.33741 | 9.34466
8.17 | 66.7489 | 2.85832 | 9.03881 | 545.339 | 2.01407 | 4.33018 | 9.34847
8.18 66.9124 | 2.86007 | 9.04434 | 547.343 | 2.01489 | 4.34095 | 9.35229
8.19 67.0761 | 2.86182 | 9.04986 | 549.353 | 2.01571 | 4.34271 | 9.35610
8.20 67.2400 | 2.86356 | 9.05539 | 551.368 | 2.01653 | 4.34448 | 9.35990
8.21 67.4041 | 2.86531 | 9.06091 | 553.388 | 2.01735 | 4.34625 | 9.36370
8.22 67.5684 | 2.86705 | 9.06642 | 555.412 | 2.01817 | 4.34801 | 9.36751
8.23 67.7329 | 2.86880 | 9.07193 | 557.442 | 2.01899 | 4.34977 | 9.37130
8.4 67.8976 | 2.87054 | 9.07744 | 559.476 | 2.01980 | 4.351563 | 9.37510
8.25 68.0625 | 2.87228 | 9.08295 | 5G1.516 | 2.02062 | 4.35329 | 9.37889
8.26 68.2276 | 2.87402 | 9.08845 | 563.560 | 2.02144 | 4.35505 | 9.38268
8.27 68.3929 | 2.87576 | 9.09395 | 565.609 | 2.02225 | 4.35681 | 9.38646
8.28 68.5584 | 2.87750 | 9.09945 | 567.664 | 2.02307 | 4.358566 | 9.39024
8.29 68.7241 | 2.87924 | 9.10494 | 569.723 | 2.02388 | 4.36032 | 9.39402
8.30 68.8000 | 2.88097 | 9.11043 | 571.787 | 2.02469 | 4.36207 | 9.39780
8.31 69.0561 | 2.88271 | 9.11592 | 573.856 | 2.02551 | 4.36382 | 9.40157
8.32 69.2224 | 2.88444 | 9.12140 | 575.930 | 2.02632 | 4.36557 | 9.40534
8.33 69.3889 | 2.88617 | 9.12688 | 578.010 | 2.02713 | 4.36732 | 9.40911
8.34 69.5556 | 2.88791 | 9.13236 | 580.094 | 2.02794 | 4.36907 | 9.41287
8.35 | 69.7225 | 2.88964 | 9.13783 | 582.183 | 2.02875 | 4.37081 | 9.41663
8.36 69.8896 | 2.89137 | 9.14330 | 584.277 | 2.02956 | 4.37286 | 9.42039
8.37 T70.0569 | 2.89310 | 9.14877 | 586.376 | 2.03037 | 4.37430 | 9.42414
8.38 70.2244 | 2.89482 | 9.15423 | 588.480 | 2.03118 | 4.3760% | 9.42789
8.39 70.3921 | 2.89655 | 9.15969 | 590.590 | 2.03199 | 4.37778 | 9.43164
8.40 T70.5600 | 2.89828 | 9.16515 | 592.704 | 2.03279 | 4.37952 | 9.43539
8.41 70.7281 | 2.90000 | 9.17061 | 594.823 | 2.03360 | 4.38126 | 9.43913
8.42 70.8964 | 2.90172 | 9.17606 | 596.948 | 2.03440 | 4.38299 | 9.44287
8.43 71.0649 | 2.90345 | 9.18150 | 599.077 | 2.03521 | 4.38473 | 9.44661
8.44 71.2336 | 2.90517 | 9.18695 | 601.212 | 2.03601 | 4.38646 | 9.45034
8.45 71.4025 | 2.90689 | 9.19239 | 603.351 | 2.03682 | 4.38819 | 9.45407
8.46 71.5716 | 2.90861 | 9.19783 | 605.496 | 2.03762 | 4.38992 | 9.45780
847 | 71.7409 | 2.91033 | 9.20326 | 607.645 | 2.03842 | 4.39165 | 9.46152
8.48 71.9104 | 2.91204 | 9.20869 | 609.800 | 2.03923 | 4.39338 | 9.48525

72.0801 | 2.91376 | 9.21412 | 611.960 { 2.04003 | 4.39510 | 9.46897

/849




8.50

8.51
8.52
8.53

8.54
8.56
8.57
8.59
8.60
8.61
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72.2500

72.4201
72.5904
72.7609

72.9316
73.1025
73.2136

73.4449
73.6164
73.7881

73.9600

74.1321
74.3044
T4.4769

74.6496
74.8225
T74.9956

75.1689
75.3424
75.5161

75.6900

75.8641
76.0384
76.2129

78.4996

78.6769
78.8544
79.0321

79.2100

79.3881
79.5664
79.7449

79.9236
80.1025
80.2816

80.4609
80.6404

Powers and Rbots

2.91719
2.91890
2.92062

2.92233
2.92404
2.92576

2.92746
2.92916
2.93087

2.93258

2.93428
2.93598
2.93769

2.93939
2.94109
2.94279

2.94449
2.94618
2.94788

2.94958

2.95127
2.95296
2.95466

2.95635
2.95804
2.95973

2.96142
2.96311
2.96479

2.96648

2.96816
2.96985
297153

2.97321
2.97489
2.97658

2.97825
2.97993
2.98161

2.98329

2.98496
2.98664
2.98831

2.98998
2.99166
2.99333

2.99500
2.99666

9.22497
9.23038
9.23580
9.24121
9.24662
9.25203

9.25743
9.26283
9.26823

9.27362

9.27901
9.28440
9.28978

9.29516
9.30054
9.30591

9.31128
9.31665
9.32202

9.32738

9.33274
9.33809
9.34345

9.34880

9.35414

9.35949

9.36483
9.37017
9.37550

9.38083

9.38616
9.39149
9.39681

9.40213
9.40744
9.41276

9.41807
9.42338
9.42868

9.43398

9.43928
9.44458
9.44987

9.45516
9.46044
9.46573

9.47101
9.47629

616.295
618.470
620.650

622.836
625.026
627.222

629,423
631.629
633.840

636.056

638.277
640.504
642.736
644.973
647.215
649.462

651.714
6563.972
656.235

658.503

660.776
663.055
665.339

667.628
669.922
672.221

674.526
676.836
679.151

681.472

683.798
686.129
688.465

690.807
693.164
695.506

697.864
700.227
702.595

704.969

707.348
709.732
712.122

714.517
716.917
719.323

721.734
724.151

2.07157
2.07235

2.07313
2.07390
2.07468

2.07545

2.07700

2.07777
2.07854
2.07931

Vi0n
4.39683

4.39855

4.40028
4.40200

4.40372
4.40543
4.40715

4.40887
4.41058
4.41229

4.41400

4.41571
4.41742
4.41913

4.42084
4.42254
44242

4.42595
4.42765
4.42935

4.43105

4.43274
4.43444
4.43613

4.43783
4.43952
4.44121

4.44290
4.44459
4.44627

44796

4.44964
4.45133
4.45301

4.45469
4.45637
4.45805

4.45972
4.46140
4.46307

4.46475

4.46642
4.46809
4.46976

4.47142
4.47309
4.47476

293

9.47268

9.47640
9.48011
9.48381

9.48752
9.49122
9.49492

9.49861
9.50231
9.50600

9.50969

9.51337
9.51708
9.52073

9.52441

953175
9.53542

9.54274
9.54640
9.565006
9.55371
9.55736
9.56101

9.56830

9.57194
9.57557
9.57921

9.58284

9.58647
9.59009
9.59372

9.59734

9.60457

9.60818
9.61179
9.615640

9.61900

9.62260
9.62620
9.62980

9.63339
9.63698
9.64057

9.644156
9.64774
9.65132
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9.12

9.3
9.37

9.39
9.40
9.41

9.43
9.44
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81.0000

81.1801
81.3601
81.5409

81.7216
81.9025
82.0836

82.2649
82.4464
82.6281

82.8100

82.9921
83.1744
83.3569

83.5396
83.7225
83

Powers and Roots

3.01164
3.01330
3.01496

3.01662

3.01828
3.01993
3.02159

3.02324
3.02190
3.02656

3.02820
3.02985
3.03150

3.03315

3.03480
3.03615
3.03809

3.03974
3.04138
3.04302

3.04467
3.04631
3.04795

3.04959

3.05123
3.05287
3.05450

- 8.05614

3.05778
3.05941

3.06105
3.06268
3.06431

3.06594

3.06757
3.06920
3.07083

3.07246
3.07409
3.07571

3.07734

- 3.07896

3.08058

9.49210
9.49737
9.50263

9.50789
9.51315
9.51840

9.52365
9.52890
9.53415

9.53939

9.54463
9.54087
9.56510

9.56033
9.56556
9.57079

9.57601
9.58123
9.58645
9.59166

9.59687
9.60208
9.60729

9.61249
9.61769
9.62289

9.62808
9.63328
9.63846

9.64363

9.64883
9.65401
9.65919

9.66437
9.66954
9.67471
9.67988
9.68504
9.69020

9.69536

9.71082

9.71597
72111
9.72625

731.433
733.871
736.314

738.763
T41.218
743.677

746.143
748.613
751.089

753.571

756.058
758.551

761.048

763.552
766.061
768.575

T71.095
773.621
776.152

778.638

781.230
783.777
786.330
788.889
791.453
794.023

796.598
799.179
801.765

804.357
806.954
809.558
812.166
814.781

817.400
820.026

822.657
825.294
827.936

830.584

833.238
835.807
838.562
841.232
843.909
846.591

849.278
851.971
852610

2.08085
2.08162
2.08239

2.08316

2.08393

2.08470

2.08546
2.08623
2.08699

2.08776

2.08852
2.08929
2.09005

2.09081
2.00158
2.09234

2.09310
2.09386
2.09462

2.09538

2.09614
2.09690
2.09765

2.09841
2.09917
2.09992

2.10068
2.10144
2.10219

2.10294

2.10370
2.10445
2.10520

2.10595
2.10671
2.10746

2.10821

291045

2.11120
2.11195
2.11270

2.11344
2.11419
2.114%4

2.11568
2.11642
24717

Yion
| 4.48140

4.48306
4.48472
4.48638

4.48803
4.48969
4.49134

4.49299
4.4%464
4.49629

4.497%

4.49959
4.50123
4.50288

4.50452
4.50616
4.50781

4.50945
4.51108
4.51272

4.51436

4.51599
4.51763
4.51926
4.52089
4.52252
4.52415

4.52578
4.52740
4.52903

4.53063
4.53228
4.53390
4.53552

4.53714

4.53876
4.54038

4.54199
4.54361

. 4.54522

4.54684

4.54845
4.55006
4.55167

4.55328
4.55488
4.55649

4.55809
4.35970
4.56130

9.65489

9.65847
9.C6204
9.66561

9.66918
9.67274
9.67630

9.67986
9.68342
9.68697

9.69052

9.69407
9.69762
9.70116

9.70470
9.70824
9.71177 |

9.71531
9.71884
9.72236

' 9.72589

9.72041
9.73293
9.73645

9.73996
9.74348
9.74699

9.75049
9.75400
9.75750

9.76100

9.76450 '
9.76799
9.77148

9.77497
9.77846
9.78195
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n? vn | VI0n| nd Yn | Y107 [V100n

90.2500 | 3.08221 | 9.74679 | 857.375 | 2.11791 | 4.56290 | 9.83048

90.4401 | 3.08383 | 9.75192 | 860.085 | 2.11865 | 4.56450 | 9.83302
90.6304 | 3.08545 | 9.75705 | 862.801 | 2.11940 | 4.56610 | 9.83737
90.8209 | 3.08707 | 9.76217 | 865.5623 | 2.12014 | 4.56770 | 9.84081

91.0116 | 3.08869 | 9.76729 | 868.251 | 2.12088 | 4.56930 | 9.84425
91.2025 | 3.09031 | 9.77241 | 870.984 | 2.12162 | 4.57089 | 9.847G9
91.3936 | 3.09192 | 9.77753 | 873.723 | 2.12236 | 4.57249 | 9.85113

91.5849 | 3.09354 | 9.78264 | 876.467 | 2.12310 | 4.57408 | 9.85456
91.7764 | 3.09516 | 9.78775 | 879.218 | 2.12384 | 4.57567 | 9.85799
91.9681 | 3.09677 | 9.79285 | 881.974 | 2.12458 | 4.07727 | 9.£6142

92.1600 | 8.09839 | 9.79796 | 884.736 | 2.12L32 | 4.57886 | 9.86485

92.3521 | 3.10000 | 9.80306 | 887.504 | 2.12605 | 4.58045 | 9.86827
92.5444 | 3.10161 | 9.80816 | 890.277 | 2.12679 | 4.53204 | 9.87169
92.7369 | 3.10322 | 9.81326 | 893.056 | 2.127563 | 4.58362 | 9.87511

92.9296 | 3.10483 | 9.81835 | 893.841 | 2.12826 | 4.58521 | 9.87853
93.1225 | 3.10644 | 9.82344 | 898.632 | 2.12900 | 4.LE079 | 9.£8195
93.3156 | 3.10805 | 9.82853 | 901.429 | 2.12974 | 4.58838 | 9.88536

93.5089 | 3.10966 | 9.83362 | 904.231 | 2.13047 | 4.58096 | 9.88877
93.7024 | 3.11127 | 9.83870 | 907.039 | 2.13120 | 4.00154 | 9.89217
93.8961 | 8.11288 | 9.84378 | 909.853 | 2.13194 | 4.59312 | 9.89558

94.0900 | 3.11448 | 9.84886 | 912.673 | 2.13267 | 4.59470 | 9.89898

94.2841 | 3.11609 | 9.85393 | 915.499 | 2.13340 | 4.59G28 | 9.00238
94.4784 | 3.11769 | 9.85901 | 918.330 | 2.13414 | 4.59786 | 9.90578
94.6729 | 3.11929 | 9.86408 | 921.167 | 2.13487 | 4.59943 | 9.90918

94.8676 | 3.12090 | 9.86914 | 924.010 | 2.13560 | 4.60101 | 9.91257
95.0625 | 3.12250 | 9.87421 | 926.859 | 2.13633 | 4.60258 | 9.91506
95.2576 | 3.12410 | 9.87927 | 929.714 | 2.13706 | 4.60416 | 9.91935

95.4529 | 3.12570 | 9.88433.| 932.575 | 2.13779 | 4.60573 | 9 92274
95.6484 | 3.12730 | 9.88939 | 935.441 | 2.13852 | 4.60730 | 9.92612
95.8441 | 3.12890 | 9.89444 | 938.314 | 2.13925 | 4.60887 | 9.92950

96.0400 | 3.13050 | 9.89949 | 941.192 | 2.13997 | 4.61044 | 9.93288

96.2361 | 3.13209 | 9.90454 | 944.076 | 2.14070 | 4.61200 | 9.93626
96.4324 | 3.13369 | 9.90959 | 946.966 | 2.14143 | 4.61357 | 9.93964
96.6289 | 3.13528 | 9.91464 | 949.862 | 2.14216 | 4.61514 | 9.94301

96.8256 | 3.13688 | 9.91968 | 952.764 | 2.14288 | 4.61670 | 9.94638
97.0225 | 3.13847 | 9.92472 | 955.672 | 2.14361 | 4.61826 { 9.94975
97.2196 | 3.14006 | 9.92975 | 958.585 | 2.14433 | 4.61983 | 9.96311

97.4169 | 3.14166 | 9.93479 | 961.505 | 2.1450S | 4.62139 | 9.95648
07.6144 | 8.14325 | 9.93982 | 964.430 | 2.14578 | 4.62295 | 9.95984
97.8121 | 3.14484 | 9.94485 | 967.362 | 2.14651 | 4.62451 | 9.96320

98.0100 | 3.14643 | 9.94987 | 970.299 | 2.14723 | 4.62607 | 9.96655
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98.2081 | 3.14802 | 9.95490 | 973.242 | 2.14795 | 4.62762 | 9.96991
08.4064 | 3.14960 | 9.95992 | 976.191 ( 2.14867 | 4.62918 | 9.97326
98.6049 | 3.15119 | 9.96494 | 979.147 | 2.14940 | 4.63073 | 9.97661

98.8036 | 3.15278 | 9.96995 | 982.108 | 2.15012 | 4.63229 | 9.97996
90.0025 | 3.15436 | 9.07497 | 985.075 | 2.15084 | 4.63384 | 9.98331
99.2016 | 3.15595 | 9.97998 | 988.048 | 2.15156 | 4.63539 | 9.98665

99.4009 | 3.15753 | 9.98499 | 991.027 | 2.15228 | 4.63694 | 9.98999
99,6004 | 3.15011 | 9.98999 | 904012 | 2ATWN \ & S Qmi
99.8001 | 3.16070 | 9.99500 | 997 003 | 21532 | A GO |\ DIRK




TABLE II —IMPORTANT NUMBERS
A. Units of Length

EngLisE UNIiTs MeTrIC UNITS
12 inches (in.) =1 foot (f*.) 10 millimeters = 1 centimeter (cm.)
8 feet =1yard (yd.) (mm.)
64 yards =1rod (rd.) 10 centimeters = 1 decimeter {dm.)
820 rods =1 mile (mi.) 10 decimeters =1 ineter (m.)
10 meters =1 dekameter (Dm.}
1000 meters = 1 kilometer (Km.)
ENcLisH To METRIC MeTtrIC TO ENGLISH
1in. = 2.5400 cm. lcm. =0.3887 in.
1 ft. =30.480 cm. l1m. =39.37 in. = 8.2808 ft.
1 mi. = 1.6093 Km. 1 Km. = 0.6214 mi.

B. Units of Area or Surface

1square yard = 9 square feet = 1296 square inches
lacre (A.) = 160 square rods = 4840 square yards
1 square mile = 640 acres = 102400 square rods

C. Units of Measurement of Capacity

DrY MEASURE Liquip MEASURE
2 pints (pt.) = 1 quart (qt.) © 4gills (gi.) =1 pint (pt.)
8 quarts =1 peck (pk.) 2 pints =1 quart (qt.)
4 pecks =1 bushel (bu.) 4 quarts =1 galion (gal.)

lgallon =23lcu.in.

D. Metric Units to English Units

1 liter = 1000 cu. cm. = 61.02 cu. in. = 1.0667 liquid quarts
1 quart = .94636 liter = 946.36 cu. cm.

1000 grams = 1 kilogram (Kg.) = &.2046 pounds (1b.)

1 pound = .4535693 kilogram = 463.59 grams

E. Other Numbers

x = ratio of circumference to diameter of a circle
= 8.14150265 _
1 radian = angle subtended by an arc equal to the radius
= 57°17' 44".8 = 57°.2057795 = 180°/x
1 degree = 0.01745329 radian, ot x |10 tadizns
Weight of 1 cu. ft. of water = 62.425Yo.
296



INDEX

Abscissa, 41.

Absolute value, 2.

Addition, of expressions, 9; of frac-
tions, 32; of radicals, 74.

Antecedent, 166.

Arithmetic progression, 141; means,
146.

Ascending powers, 8.

Axes, coordinate, 41.

Base, logirithm to any, 242.

Brace, 9.

Bracket, 9.

Binomial, 8; theorem, 268; proof
of theorem, 261.

Calculating machines, 244.
Change of signs in fractions, 29.
Characteristic, 219, 221, 223.
Coefficient, 8.

Common difference, 141,
Common logarithm, 242,
Complex numbers, 93.
Consequent, 166.

Constants, 181.

Codrdinates of a point, 41.
Cube roaqt, 5.

Decimals, repeating, 161.

Denominator, 29.

Descending powers, 8.

Determinant, of the second order,
264; of the third order, 269; of
higher order, 273.

Difference, tabular, 230.

Discriminant, 110.

Division, formulas and rules, 14.

Elements of a determinant, 265.
Elimination by substitution, 50;
by addition or subtraction, 51.

Ellipse, 125.

Equation, simple, 36; linear, 36;
of the first degree, 36; solution

of, 36; root of, 36; principles
useful in the solution of, 37, 38;
. containing radicals, 65; literal,
95; quadratic, see Quadratic
equation.
Equations, simultaneous, 47; in-

consistent, 48; simultaneous in
three unknowns, 54.

Evolution, 196.

Exponent, 4; fractional, 198; zero,
199; fundamental laws for any
rational exponent, 201.

Exponents, laws of, 193; introduc-
tion of general, 198; negative in
fractions, 200.

Extremes of a proportion, 167.

Factor, prime, 26.

Factoring, type forms of, 19, 23.

Factors, common, 26; highest com-
mon, 26.

Formulas, 97, 102, 205.

Fractions, definition, 28; equiva-
lent, 29; change of signs in, 29;
reduction to lowest terms, 30;
reduction to lowest common de-
nominator, 31; addition and sub-
traction of, 32; multiplication
and division of, 36.

Functions, idea of,, 245 ; types of alge-
braic functions, 246; considered
graphically, 250.

Gear wheel law, 101.

Geometric progression, 150; means,
154 ; infinite, 156.

Graph, of an equation, 43; deter-
mined from two points, 44; of a
quadratic, 90; of a function, 250.
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Hyperbola, 126.

Imaginary numbers, 116; pure,
93; unit, 116; addition and sub-
traction of, 118; multiplication
of, 119; division of, 120; geo-
metric representation of, 121.

Inconsistent equations, 47.

Index, 5, 68, 196.

Involution, 193.

Irrational numbers, 68.

Letters, use of in algebra, 4.

Lever, law of, 100.

Limit, variable, 159.

Linear equation, 36; graph of, 43, 44.

Logarithm, 217; of any number,
217; number corresponding to,
231; of a power, 235; general,
242; common, 242; of a root,
244 ; tables, 201.

Mantissa, 219; determination of,
225.

Mathematical induction, 255.

Mean proportional, 172.

Means of a proportion, 167.

Monomial, 8; square root of, 62.

Multiple, common, 27; lowest com-
mon, 28.

Multiplication, formulas and rules,
11,

Negative exponents, 199.

Negative numbers, 1;
with, 2.

Numbers, negative, 1; positive, 1;
operations with, 2; rational, 68,
108; irrational, 68; compiex, 93;
real, 93, 108; summary, 109;
imaginary, see Imaginary number.

Numerator, 29.

operations

Order of a determinant, 265, 269.
Ordinate, 41.
Origin, 41.

Parenthesis, 9.
Perfect square trinomial, 20.

INDEX

Periods in square root, 60.

Polynomial, 8; arrunging a,
square root of, 62.

Power, 4; tables, 274.

Powers, 195.

Prime factor, 27.

Progression, arithmetic, 141;
metrie, 150.

Proportion, 167; terms of a, 167;
extremes of a, 167; means of a,
167 ; algebraic, 168; fundamental
principles of, 168, 174; inversion
in a, 174; alternation in a, 174;
composition in a, 174; division
in a, 175; composition and divi-
sion in a, 175; several equal ratios
in a, 176.

Proportional, mean, 172; third and
fourth, 172,

8;

geo-

Quadratic equation, 78; pure, 78;
affected, 78; solution of pure,
78; solution of affected by fac-
toring, 81; solution by complet-
ing the square, 83, 85; solution
‘by the Hindu method, 86: solu-
tion by formula, 87; graphical
solution of, 90, 122; having imag-
inary solutions, 92; character of
the roots of, 109 ; character of roots
considered geometrically, 111; for-
mation of from given solutions,
114; solution by eliminution,
128; simultaneous, 137.

Radical, or quadratic radical, 67;
of the nth order, 6%; value of,
68.

Radicals, simplificatiom of, 71, 206;
similar, 74; addition and sub-
traction of, 74; multiplication
of, 75; division of, 77.

Radicand, 68, 196.

Ratio, 166; of geometric progres-
sion, 150.

Rational number, 68.

Rationalizing the denominator, 211,

Root, square, 5; nth, 5, 196.

Root of an equation, 36,



INDEX

Roots, 196;
ratic, 108; character of, 111

Simultancous equations, 47.
Slide rule, 244.

Solution of an equation, 44.
Special products, formulas of, 17.

Square root, 5; of a number, 59;

in arithmetic, 59; in algebra, 62

of trinomials, 62;

of, 64; tables, 274.
Subtraction, 8: of expressions, 9

of fractions, 32; of radiculs, 74.
Surd, 68; binomial, 214,

double sign

299

imaginary of a quad-| Table, use of, 68.

' Term, 8.

Terms, like, 8; of a proportion, 167.

Theorem, binomial, 258.

Trinomial, 8; perfect square, 20;
square root of, 62.

Unit, imaginary, 116.

’

Variables, 181.

Variution, direct, 178; inverse, 179;

; joint, 18); problems in, 185;
geometrically considered, 190.

Vinculum, 9.

Printed il;'-;la_ts.United_S;uten of A_;I;riol.
























